Emergence of synergistic and competitive pathogens in a coevolutionary spreading model

Alessio Cardillo (@a_cardillo)

Internet Interdisciplinary Institute (IN3) - Universitat Oberta de Catalunya, Barcelona (Spain)

Conference on Complex Systems (CCS) 2022 — Palma de Mallorca Tuesday, October 18th 2021

0 Percentage 0-24 25-49 50-74 ≥75 No data Not applicable

Percentage of new and relapse TB cases with documented HIV status, 2017^a

• WHO Global Tuberculosis report 2017. Available at:

https://www.who.int/teams/global-tuberculosis-programme/tb-reports

Main questions:

Can we describe the emergence of coinfection/cross-immunity as the outcome of an evolutionary process?

Main questions:

- Can we describe the emergence of coinfection/cross-immunity as the outcome of an evolutionary process?
- What happens to a double-SIR model when we introduce cooperative/defective strains?

Main questions:

- Can we describe the emergence of coinfection/cross-immunity as the outcome of an evolutionary process?
- What happens to a double-SIR model when we introduce cooperative/defective strains?
- What happens when you combine spreading dynamics and (evolutionary) game theory?

• Anderson, R. M., & May, R. M. "Infectious diseases of humans: Dynamics and control". (Oxford University Press, Oxford, 1991).

Double SIR

- 2 pathogens (A and B)
- 9 states
- 6 parameters

• Chen, L., et al. Europhys. Lett., 104, 50001 (2013). DOI: 10.1209/0295-5075/104/50001

Multiple SIR (strategies)

- 2 pathogens (A and B)
- 2 strategies
 (C and D)
- 4 species

 (A_C, A_D, B_C, B_D)
- 25 states
- > 7 parameters

Let's simplify a bit ...

• Set all recovery rates equal to one (*i.e.* r = 1).

Let's simplify a bit ...

- Set all recovery rates equal to one (*i.e.* r = 1).
- Single pathogen infection independent of pathogen's strategy (*i.e.* $\alpha_C = \alpha_D = \alpha$).

 $\mathbf{X}_{\Lambda} + \mathbf{S} \xrightarrow{\alpha} 2 \mathbf{X}_{\Lambda}$

 $+ \ \ \overset{\alpha}{\longrightarrow} \$

Let's simplify a bit ...

- Set all recovery rates equal to one (*i.e.* r = 1).
- Single pathogen infection independent of pathogen's strategy (*i.e.* $\alpha_C = \alpha_D = \alpha$).
- Multiple pathogens infection dependent only on host's strategy (*i.e.* $\beta_{CC} = \beta_{DC} = \beta_C$ and $\beta_{CD} = \beta_{DD} = \beta_D$).

$$\mathbf{X}_{\Lambda} + \mathbf{Y}_{\Gamma} \stackrel{\beta_{\Gamma}}{\Longrightarrow} \mathbf{X}_{\Lambda} + \mathbf{X}_{\Lambda}\mathbf{Y}_{\Gamma}$$

$$\mathbf{X}_{\Gamma} + \mathbf{X}_{\Gamma} \stackrel{\beta_{\Gamma}}{\Longrightarrow} \mathbf{X}_{\Gamma}$$

Let's simplify a bit ...

- Set all recovery rates equal to one (*i.e.* r = 1).
- Single pathogen infection independent of pathogen's strategy (*i.e.* $\alpha_C = \alpha_D = \alpha$).
- Multiple pathogens infection dependent only on host's strategy (*i.e.* $\beta_{CC} = \beta_{DC} = \beta_C$ and $\beta_{CD} = \beta_{DD} = \beta_D$).
- Easier to infect a host occupied by a cooperator pathogen than a defector one (*i.e.* β_C > β_D).

$$\beta_{C} = c \alpha \qquad \qquad \alpha \in]0, +\infty[$$

$$\beta_{D} = \frac{\alpha}{c} \qquad \text{with} \qquad c \in]0, +\infty[$$

Replicator equationT Time (discrete)
$$\rho_i^{T+1} = \rho_i^T \begin{bmatrix} 1 + \prod_i^T - \overline{\prod}^T \end{bmatrix}$$
 ρ_i Density of species i $\Pi_i (\rho)$ Fitness (payoff)of species i $\overline{\Pi}$ Average fitness(whole population)

Multiple pathogens infection

$$\begin{cases}
\mathcal{I} \\
\pi_{\mathbf{X}_{\Lambda}} \\
\pi_{\mathbf{Y}_{\Gamma}}
\end{cases} = \begin{cases}
C & D \\
D & \left(\frac{1}{2} & \gamma \\ 1 - \gamma & -\frac{1}{2}\right) \\
\text{with } \gamma \in \left[0, \frac{1}{2}\right]
\end{cases}$$

Note

This payoff matrix corresponds to the so-called **Hawk and Dove** game.

Phase 2: Evolution of concentrations/strategies (between season T and T + 1)

Phase 2: Evolution of concentrations/strategies (between season T and T + 1)

Phase 2: Evolution of concentrations/strategies (between season T and T + 1)

Phase 2: Evolution of concentrations/strategies (between season T and T + 1)

Phase 2: Evolution of concentrations/strategies (between season T and T + 1)

Results

Species' prevalence

$$\Delta_{\rm CD}\Big|_{t_{\infty}} = (a_{\rm C} + b_{\rm C} + a_{\rm C}b_{\rm C}) - (a_{\rm D} + b_{\rm D} + a_{\rm D}b_{\rm D})$$

Species' prevalence $\Delta_{\rm CD}\Big|_{t_{\infty}} = (a_{\rm C} + b_{\rm C} + a_{\rm C}b_{\rm C}) - (a_{\rm D} + b_{\rm D} + a_{\rm D}b_{\rm D})$

• Chen, L., et al. Europhys. Lett., 104, 50001 (2013). DOI: 10.1209/0295-5075/104/50001

• Cai, W., et al. Nat. Phys., 11, 936-940 (2015). DOI: 10.1038/nphys3457

Summing up . . .

Take home messages

Phase 2: Evolution of concentrations/strategies (between season T and T + 1)

A proposal to include evolutionary processes in multiple (SIR) disease spreading

Take home messages

The outcome of the dynamics is neither the expected one for epidemics, nor for games (more is different)

Acknowledgements

Fakhteh Ghanbarnejad

Philipp Hövel

Acknowledgements

Grant no. IJCI-2017-34300

European Research Council Established by the European Commission

ERC-2018-STG ID: 803860

Acknowledgements

DOI: 10.1103/PhysRevE.105.034308

acardillo@uoc.edu

(a)

https://cardillo.web.bifi.es/

@a_cardillo

Extra contents

Seed conservation

$$\rho_{A_{C}}\big|_{t=0} + \rho_{A_{D}}\big|_{t=0} + \rho_{B_{C}}\big|_{t=0} + \rho_{B_{D}}\big|_{t=0} = \omega$$

4D projection

$$\begin{split} \rho_{A_{C}} &= \left[A_{C}\right]\Big|_{t=0} = \omega \, x \, y \,, \\ \rho_{A_{D}} &= \left[A_{D}\right]\Big|_{t=0} = \omega \, x \, (1-y) \,, \\ \rho_{B_{C}} &= \left[B_{C}\right]\Big|_{t=0} = \omega \, (1-x) \, y \,, \\ \rho_{B_{D}} &= \left[B_{D}\right]\Big|_{t=0} = \omega \, (1-x) \, (1-y) \,\,. \end{split}$$

