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Main questions:

1 Can we describe the emergence of
coinfection/cross-immunity as the outcome of an
evolutionary process?

2 What happens to a double-SIR model when we
introduce cooperative/defective strains?

3 What happens when you combine spreading dynamics
and (evolutionary) game theory?
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Multiple SIR with cooperative/defective strains

S A a

S I R
Simple SIR

• 1 pathogen (A)
• 3 states
• 2 parameters

• Anderson, R. M., & May, R. M. “Infectious diseases of humans: Dynamics and control”. (Oxford University

Press, Oxford, 1991).
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Multiple SIR with cooperative/defective strains
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Double SIR
• 2 pathogens

(A and B)
• 9 states
• 6 parameters

• Chen, L., et al. Europhys. Lett., 104, 50001 (2013). DOI: 10.1209/0295-5075/104/50001
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Multiple SIR with cooperative/defective strains

aDADBDbD

AD aDBCBDACbD

S ADBC aDbCACBDaCbD

aDBDADbD

aDbD

 

aC ACBC bC

aCBC ACbC

aCbC

AC BC ADbCaCBD

Multiple SIR
(strategies)

• 2 pathogens
(A and B)

• 2 strategies
(C and D)

• 4 species
(AC, AD, BC, BD)

• 25 states
• > 7 parameters
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Multiple SIR with cooperative/defective strains

Let’s simplify a bit . . .
• Set all recovery rates equal to

one (i.e. r = 1).

• Single pathogen infection
independent of pathogen’s
strategy (i.e. 𝛼C = 𝛼D = 𝛼).

• Multiple pathogens infection
dependent only on host’s
strategy (i.e. 𝛽CC = 𝛽DC = 𝛽C
and 𝛽CD = 𝛽DD = 𝛽D).

• Easier to infect a host occupied
by a cooperator pathogen than
a defector one (i.e. 𝛽C > 𝛽D).
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Multiple SIR with cooperative/defective strains

𝛽C = c 𝛼

𝛽D =
𝛼

c
with

𝛼 ∈ ]0, +∞[
c ∈ ]0, +∞[

0 1 2

c

0

1

2

3

4

β

α= 0.75

0 1 2

c

0

1

2

3

4
α= 1.0

0 1 2

c

0

1

2

3

4
α= 1.25

0 1 2

c

0

1

2

3

4
α= 1.75

βC

βD

βC = βD

3/9



Crash course on evolutionary dynamics

4/9



Crash course on evolutionary dynamics

before after
Evolutionary theory
Replication The ability of an

organism to reproduce.

Selection The ability of a species
to replicate faster than
another.

• Nowak, M. A. Evolutionary dynamics: exploring the equations of life. (Belknap Press, Harvard, 2007).
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Crash course on evolutionary dynamics

Replicator equation

𝜌T+1
i = 𝜌T

i

[
1 + ΠT

i − Π
T

selection

] T Time (discrete)
𝜌i Density of species i

Πi (𝜌) Fitness (payoff)
of species i

Π Average fitness
(whole population)

• Nowak, M. A. Evolutionary dynamics: exploring the equations of life. (Belknap Press, Harvard, 2007).
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Crash course on evolutionary dynamics

Single pathogen infection

𝜋XΛ = 1

+

4/9



Crash course on evolutionary dynamics

Multiple pathogens infection

𝜋XΛ

𝜋YΓ

}
=

( C D
C 1

2 𝛾

D 1 − 𝛾 −1
2

)
with 𝛾 ∈

[
0, 1

2
]

+

• Nowak, M. A. Evolutionary dynamics: exploring the equations of life. (Belknap Press, Harvard, 2007).
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Crash course on evolutionary dynamics

Multiple pathogens infection

𝜋XΛ

𝜋YΓ

}
=

( C D
C 1

2 𝛾

D 1 − 𝛾 −1
2

)
with 𝛾 ∈

[
0, 1

2
]

Note
This payoff matrix corresponds to the
so-called Hawk and Dove game.

+

• Nowak, M. A. Evolutionary dynamics: exploring the equations of life. (Belknap Press, Harvard, 2007). 4/9
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The coevolutionary model

Coupled SIR (25 states) dynamics
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Accumulation of Payoff

Multiple path. infection (HD game)

Single pathogen infection

Multiple pathogens infection

Single pathogen infection

InfectedInfecting

Phase 2: Evolution of concentrations/strategies (between season    and         )

Phase 1 (within season    )

5/9



Results
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Species’ prevalence

ΔCD

���
t∞
=
(
aC + bC + aCbC

)
−
(
aD + bD + aDbD

)
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Pathogens’ perspective
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Pathogens’ perspective

• Chen, L., et al. Europhys. Lett., 104, 50001 (2013). DOI: 10.1209/0295-5075/104/50001

• Cai, W., et al. Nat. Phys., 11, 936–940 (2015). DOI: 10.1038/nphys3457
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Species’ evolution across seasons

BD PD AD

PB PA

BC PC AC

(a) α= 0.8 c= 1.0
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Summing up . . .



Take home messages

Coupled SIR (25 states) dynamics
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A proposal to include evolutionary processes
in multiple (SIR) disease spreading
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Take home messages
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The outcome of the dynamics is neither the expected one
for epidemics, nor for games (more is different)
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Extra contents
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Seed conservation

𝜌AC

��
t=0 + 𝜌AD

��
t=0 + 𝜌BC

��
t=0 + 𝜌BD

��
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4D projection

𝜌AC = [AC]
���
t=0

= 𝜔 x y ,

𝜌AD = [AD]
���
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= 𝜔 x (1 − y) ,
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= 𝜔 (1 − x) y ,
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���
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Hawk and Dove’s equilibria
Three fixed points

x★ =


0 → unstable
0 < x★ < 1 → stable
1 → unstable
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