Characterization of interactions' persistence in time-varying networks

Alessio Cardillo (@a_cardillo)

Internet Interdisciplinary Institute (IN3) Universitat Oberta de Catalunya (UOC) – Barcelona (Spain)

CompleNet Live 2022 — Wednesday, June 1st 2022

Special thanks to ...

Universidad Zaragoza

https://www.youtube.com/watch?v=faWaqRyR8nY

networks?

1 How to measure the interactions' persistence?

- How to measure the interactions' **persistence**?
- 2 How special is the level of persistence observed?

- How to measure the interactions' persistence?
- 2 How special is the level of persistence observed?
- How persistent are the interactions in empirical networks?

- How to measure the interactions' persistence?
- O How special is the level of persistence observed?
- Output
 Output
 Output
 Description
 Output
 Description
 Output
 Description
 Description
 Output
 Description
 De
- What are the effects of changing the time resolution (coarse-graining)?

Definition

$$\mathcal{T}_{m,n} = \frac{\sum\limits_{i,j=1}^{N} \left| a_{i,j}(m) - a_{i,j}(n) \right|}{\sum\limits_{i,j} \max \left\{ a_{i,j}(m), a_{i,j}(n) \right\}}.$$

 $a_{i,j}(m) \rightarrow (i,j)$ -th element of the adjacency matrix of snapshot G(m).

 $N \rightarrow$ Number of nodes.

• A. Li, et al. Evolution of cooperation on temporal networks. Nat. Comms., 11, 2259, (2020).

Definition

$$\mathcal{T}_{m,n} = \frac{\bigcup_{m,n} - \bigcap_{m,n}}{\bigcup_{m,n}} = 1 - \frac{\bigcap_{m,n}}{\bigcup_{m,n}},$$

 $\bigcup_{m,n} \to \text{ Size of the union of }$ the edges' sets, \mathcal{E}_m and \mathcal{E}_n , of snapshots G(m) and G(n).

 $\bigcap_{m,n} \to$ Size of the intersection of the same sets.

$$\mathcal{T}_{m,n} = \begin{cases} 1 & \text{if } & \bigcap_{m,n} = 0 \\ 0 & \text{if } & \bigcap_{m,n} = \bigcup_{m,n} \end{cases}$$

$$\overline{\mathcal{T}} = \frac{1}{N_s - 1} \sum_{m=1}^{N_s - 1} \mathcal{T}_{m,m+1}$$

• L. Gauvin et al. Randomized reference models for temporal networks, arXiv:1806.04032 (2018).

DOI: 10.48550/arxiv.1806.04032

$$\overline{\mathcal{T}}_{th} = 1 - \frac{1}{N_s - 1} \sum_{m=1}^{N_s - 1} \frac{\bigcap_{m,m+1}}{\bigcup_{m,m+1}} = 1 - \frac{\langle x_{ij}^2 \rangle}{2 \langle x_{ij} \rangle - \langle x_{ij}^2 \rangle}$$

 $x_{ij} \rightarrow \text{Probability that}$ edge (i,j) exists in any of the snapshots.

Data

Data

- 5 face-to-face networks (from the SocioPatterns repository).
- 1 transportation network of US domestic flights.
- 1 social network of e-mail exchange.
- 1 functional brain network.
- 3 (star-like) trade networks (from the UN COMMTRADE database).

Good to know

The data on trade and US domestic flights (and code to download them) will be available (soon) at:

https://cardillo.web.bifi.es/data.html

Data

Dataset	Ν	N_s	Δt	K_{TOT}	$\overline{\mathcal{T}}$	$\langle \rho \rangle (\times 10^{-4})$
	FACE-TO-FACE					
Baboons	13	40845★		78	0.592	287.47
Malawi	86	43437★		347	0.436	8.51
High School	327	7374	20 s	5818	0.512	4.80
SFHH Conference	403	3508		9565	0.510	2.47
Hospital	75	9452		1139	0.532	12.36
	TRADE					
Trade - carpets Turkey	207	52	1 year	206	0.301	34.29
Trade - guns Italy	156	116	1 month	155	0.287	59.92
Trade - cereals Italy	157	108		156	0.286	60.41
	OTHER					
Brain	16	396	1/200 S	120	0.452	395.99
E-mails	1890	19380	1 s	4383	0.940	0.01
US domestic flights	1677	371	1 month	25890	0.248	24.16

Take home messages

Temporality as a metric to quantify the persistence of the interactions in time-varying networks

Take home messages

The comparison with a (theoretical) null case as a way to quantify how special is the amount of persistence

Take home messages

Acknowledgements

Grant no. IJCI-2017-34300

ERC-2018-STG ID: 803860

Wanna know more?

DOI: 10.48550/arXiv.2205.15435

acardillo@uoc.edu

https://cardillo.web.bifi.es/data.html

https://cardillo.web.bifi.es/

Extra contents

1 Embed snapshots in a metric space with $d_{m,n} = \mathcal{T}_{m,n}$

- 1 Embed snapshots in a metric space with $d_{m,n} = \mathcal{T}_{m,n}$
- 2 Compute all the temporalities between snapshots and sort them in ascending (desceinding) order.

- 1 Embed snapshots in a metric space with $d_{m,n} = \mathcal{T}_{m,n}$
- 2 Compute all the temporalities between snapshots and sort them in ascending (desceinding) order.
- 3 Add edges to the Spanning Tree (chain).

- 1 Embed snapshots in a metric space with $d_{m,n} = \mathcal{T}_{m,n}$
- 2 Compute all the temporalities between snapshots and sort them in ascending (desceinding) order.
- 3 Add edges to the Spanning Tree (chain).
- 4 Edges can be added only if the graph forms a chain and the nodes can have at most degree 2.

- 1 Embed snapshots in a metric space with $d_{m,n} = \mathcal{T}_{m,n}$
- 2 Compute all the temporalities between snapshots and sort them in ascending (desceinding) order.
- 3 Add edges to the Spanning Tree (chain).
- 4 Edges can be added only if the graph forms a chain and the nodes can have at most degree 2.
- Sepeat steps 3 and 4 until getting an open chain. 2/2