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How can we (and why we should) measure the
interactions’ persistence in time-varying

networks?
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Measuring the persistence: Temporality

Definition

Tm,n =

N∑
i,j=1

��ai,j (m) − ai,j (n)
��∑

i,j
max

{
ai,j (m), ai,j (n)

} .

ai,j (m) → (i, j)-th element of
the adjacency matrix
of snapshot G(m).

N → Number of nodes.

• A. Li, et al. Evolution of cooperation on temporal networks. Nat. Comms., 11, 2259, (2020).

DOI:10.1038/s41467-020-16088-w
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Measuring the persistence: Temporality

Definition

Tm,n =

⋃
m,n −

⋂
m,n⋃

m,n
= 1−

⋂
m,n⋃
m,n

,

⋃
m,n → Size of the union of

the edges’ sets, Em
and En, of snapshots
G(m) and G(n).⋂

m,n → Size of the
intersection of the
same sets.

4/11



Measuring the persistence: Temporality

Tm,n =

{
1 if

⋂
m,n = 0

0 if
⋂

m,n =
⋃

m,n
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Measuring the persistence: Temporality

Average temporality

T =
1

Ns − 1

Ns−1∑
m=1
Tm,m+1
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How special your network is: Null model
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• L. Gauvin et al. Randomized reference models for temporal networks, arXiv:1806.04032 (2018).

DOI: 10.48550/arxiv.1806.04032
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How special your network is: Null model
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How special your network is: Null model
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How special your network is: Null model

T th = 1 − 1
Ns − 1

Ns−1∑
m=1

⋂
m,m+1⋃
m,m+1

=

= 1 −
〈x2

ij 〉
2 〈xij〉 − 〈x2

ij 〉

xij → Probability that
edge (i, j) exists
in any of the
snapshots.
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Data
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Data

• 5 face-to-face networks (from the SocioPatterns
repository).
• 1 transportation network of US domestic flights.
• 1 social network of e-mail exchange.
• 1 functional brain network.
• 3 (star-like) trade networks (from the UN COMMTRADE
database).

Good to know
The data on trade and US domestic flights (and code to download them) will be
available (soon) at:
https://cardillo.web.bifi.es/data.html
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Data

Dataset N Ns ∆t KTOT T 〈d〉(×10−4)
face-to-face

Baboons 13 40845★

20 s

78 0.592 287.47
Malawi 86 43437★ 347 0.436 8.51

High School 327 7374 5818 0.512 4.80
SFHH Conference 403 3508 9565 0.510 2.47

Hospital 75 9452 1139 0.532 12.36
trade

Trade - carpets Turkey 207 52 1 year 206 0.301 34.29
Trade - guns Italy 156 116 1 month 155 0.287 59.92

Trade - cereals Italy 157 108 156 0.286 60.41
other

Brain 16 396 1
200 s 120 0.452 395.99

E-mails 1890 19380 1 s 4383 0.940 0.01
US domestic flights 1677 371 1 month 25890 0.248 24.16
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Changing the time resolution
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Changing the time resolution
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Summing up ...



Take home messages

Temporality as a metric to quantify the
persistence of the interactions in

time-varying networks
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The comparison with a (theoretical) null case as a
way to quantify how special is the amount of

persistence

9/11



Take home messages
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What happens when we analyze the

system at different resolutions
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Wanna know more?

acardillo@uoc.edu

https://cardillo.web.bifi.es/

@a_cardillo
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Extra contents
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Finding the optimal order
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Finding the optimal order
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Finding the optimal order
1 Embed snapshots in a

metric space with
dm,n = Tm,n

2 Compute all the
temporalities between
snapshots and sort them
in ascending
(desceinding) order.

3 Add edges to the
Spanning Tree (chain).

4 Edges can be added only
if the graph forms a chain
and the nodes can have
at most degree 2.

5 Repeat steps 3 and 4
until getting an open
chain.
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