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Motivation

Foreword
Dynamical processes acting on time varying graphs behave

differently than on static graphs.

P. Holme, & J. Saramäki, Temporal networks. Physics Reports, 519(3), (2012).
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Motivation

Question:
Does time resolution affects the classical results about the

enhancement of cooperation driven by static networks?
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Short Introduction on
Evolutionary Game Theory

The game: Social Dilemma
Consider a pairwise interaction where individuals face a social dilemma be-
tween two possible strategies: Cooperation (C) and Defection (D). Such
dilemmas can be encoded into a two-parameter game described by the
payoff matrix: (C D

C R S
D T P

)
=

(C D
C 1 S
D T 0

)
, (1)
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Short Introduction on
Evolutionary Game Theory

Mean field case

(C D
C 1 S
D T 0

)
,

We consider three different kind of
social dilemmas, namely:

Harmony Game (HG)
Chicken Game (CG)
Stag Hunt (SH)
Prisoner’s Dilemma (PD)
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Short Introduction on
Evolutionary Game Theory

Strategy Update
After all the individuals have played
with all their neighbors in the network,
they update their strategies as a result
of an evolutionary process. To update
the strategies of agents we consider
the so-called Fermi Rule:

Pi→j =
1

1 + e−β(pj−pi )
, (1)
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Time Varying Graphs
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Datasets

MIT Reality Mining
Data of proximity interactions collected through the
use of Bluetooth-enabled phones distributed to a
group of 100 users, composed by 75 MIT Media Lab-
oratory students and 25 faculty members recorded
over a period of about six months.

M N τ E? 〈k〉agg

41291 100 5 min 2114 42

N. Eagle, and A. Pentland, "Reality mining: sensing complex social systems."
Personal and Ubiquitous Computing 10, 255–268 (2006).
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Datasets

INFOCOM’06
The data set consists of proximity measurements collected during the IEEE
INFOCOM’06 conference held in a hotel in Barcelona between 23-rd and
29-th of April 2006.

M N τ E? 〈k〉agg

2880 78 2 min 2730 70

J. Scott et al. , "CRAWDAD Trace", INFOCOM, Barcelona (2006).
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Datasets

Experimental setup:
1. A number n of graphs corresponding to a time interval equal to ∆t is

projected onto a single weighted one.

2. Each agent i plays with all her ki neighbors and accumulate a payoff pi .
3. Agents update simultaneously their strategies.
4. Apply points from 1 to 3 on the next time snapshots until stationary

state is reached.
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Datasets

Experimental setup:
1. A number n of graphs corresponding to a time interval equal to ∆t is

projected onto a single weighted one.
2. Each agent i plays with all her ki neighbors and accumulate a payoff pi .
3. Agents update simultaneously their strategies.
4. Apply points from 1 to 3 on the next time snapshots until stationary

state is reached.

Initial fraction of cooperators fc(0) = 0.5 randomly distributed.
Payoff parameters T ∈ [1,2] S ∈ [−1,1].
Two kind of time sequence: the real one and a randomized version.
Averaged over 50 different realizations.
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Time series
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Cooperation diagram I
We measure the cooperation level as:

〈C(T ,S)∆t〉 =
1
Q

Q∑
i=1

N i
c

N
,
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Cooperation diagram I
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Cooperation diagram II
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Overall level of cooperation Ctot(∆t)

Ctot (∆t) =
1

Ctot (Mτ)

∫ 2

0
dT
∫ 1

−1
C(T ,S)dS
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Summing up . . .

Take home messages
The level of cooperation achievable on time-varying graphs crucially de-
pends on the temporal resolution, i.e. on the length of the aggregation
interval used to construct each graph.

The temporal ordering of interactions hinders cooperation, so that tem-
porally reshuffled versions of the same time-varying graph usually ex-
hibit a considerably higher level of cooperation.
The average size of the giant component across different consecutive
time-windows is indeed a good predictor of the level of cooperation at-
tainable on time-varying graphs.
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What’s next? (Work in progress . . .)
Trying to find bigger datasets.

Use different randomization methodologies?
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Time series

σon −→ Contact duration.
σoff −→ Inter-contact time.
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