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Motivation

Foreword

Dynamical processes acting on time varying graphs behave
differently than on static graphs.

P. Holme, & J. Saraméki, Temporal networks. Physics Reports, 519(3), (2012). )
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Motivation

Does time resolution affects the classical results about the
enhancement of cooperation driven by static networks?

A. Cardillo | NetSci 2013, 06/06/13 | 4/12



Short Introduction on
Evolutionary Game Theory

The game: Social Dilemma

Consider a pairwise interaction where individuals face a social dilemma be-
tween two possible strategies: (C) and (D). Such
dilemmas can be encoded into a two-parameter game described by the

Cc D CcC D
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Short Introduction on
Evolutionary Game Theory

1
Mean field case
¢ D (HG) (CG)
c/1 S
D\T 0)”
We consider three different kind of
social dilemmas, namely: (SH) (PD)
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Mean field case 1 ]
Cc D i
c/1 S
D\T 0)’
We consider three different kind of
social dilemmas, namely:
m Harmony Game (HG)
m Chicken Game (CQG)

m Stag Hunt (SH)
m Prisoner’s Dilemma (PD)
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\ *Fg Short Introduction on
Evolutionary Game Theory

Strategy Update

After all the individuals have played
with all their neighbors in the network,
they as aresult
of an evolutionary process. To update
the strategies of agents we consider
the so-called
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Datasets

MIT Reality Mining

Data of proximity interactions collected through the
use of Bluetooth-enabled phones distributed to a
group of 100 users, composed by 75 MIT Media Lab-
oratory students and 25 faculty members recorded
over a period of about six months.

41291 | 100 | 5min | 2114 42

v

N. Eagle, and A. Pentland, "Reality mining: sensing complex social systems."
Personal and Ubiquitous Computing 10, 255-268 (2006). J
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Datasets

INFOCOM'06

The data set consists of proximity measurements collected during the IEEE
INFOCOM’06 conference held in a hotel in Barcelona between 23-rd and

29-th of April 2006.

M N T E* (K)agg
2880 | 78 | 2min | 2730 70

J. Scott et al. , "CRAWDAD Trace", INFOCOM, Barcelona (2006). )
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Datasets

Experimental setup:

1. A number n of graphs corresponding to a equal to Atis
projected onto a single weighted one.
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Datasets

Experimental setup:

1. A number n of graphs corresponding to a equal to At is
projected onto a single weighted one.

2. Each agent i plays with all her k; neighbors and accumulate a payoff p;.
3. Agents update simultaneously their strategies.

4. Apply points from 1 to 3 on the next time snapshots until stationary
state is reached.

m Initial fraction of cooperators f;(0) = 0.5 randomly distributed.

m Payoff parameters T € [1,2] S e [-1,1].

m Two kind of time sequence: the real one and a randomized version.
m Averaged over 50 different realizations.

v
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Summing up ...

Take home messages

m The level of cooperation achievable on time-varying graphs crucially de-
pends on the temporal resolution, i.e. on the length of the aggregation
interval used to construct each graph.
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Take home messages

m The level of cooperation achievable on time-varying graphs crucially de-
pends on the temporal resolution, i.e. on the length of the aggregation
interval used to construct each graph.

m The temporal ordering of interactions hinders cooperation, so that tem-
porally reshuffled versions of the same time-varying graph usually ex-
hibit a considerably higher level of cooperation.

m The average size of the giant component across different consecutive
time-windows is indeed a good predictor of the level of cooperation at-
tainable on time-varying graphs.

What'’s next? (Work in progress . ..)

m Trying to find bigger datasets.
m Use different randomization methodologies?
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