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1 Introduction
Urban street patterns are a particular class of spatial networks. In order to compare different cities
properties one has to find proper bounds to normalize the results. The main problem with spatial
graphs is that, in most of the cases, the random graph and the complete graph are no more a good
way to normalize the results. To overcome this problem, we consider both minimum spanning
trees and greedy triangulations induced by the real distribution of nodes [1].
In urban design, a long-term effort has been spent in order to understand what streets and routes

would constitute the so-called “backbone of a city” [2, 3]. Here we provide a tool to find out the back-
bone of networks of urban street patterns [4]. Such a tool is based on the concept of spanning trees,
and on the capability of centrality measures to uncover the essential streets of a city. We compare
the obtained trees with the standard spanning trees based on minimizing the total lengths.

2 Minimum Spanning Tree and Greedy Triangula-

tion
In order to compare the different cities we use two particular graphs namely:

•Minimum Spanning Tree (MST) is the shortest tree which connects every node into
a single connected component.

•Greedy Triangulation (GT) is the planar graph with the highest number of edges
Kmax, and that minimize the total length.

For each of the twenty cities we have constructed the respective MST and GT. These two bounds
make sense also as regards to the possible evolution of a city: the most primitive forms are close
to trees, while more complex forms involve the presence of cycles.

The urban pattern of Savannah as
it appears in the original map (top
left), and reduced into a spatial
graph (top right). We also report
the corresponding MST (bottom
left) and GT (bottom right).

3 Topological properties of urban street patterns net-

works
Networks considered here consist of twenty 1-square-mile samples of different world cities [1].
These cities differ in terms of cultural, social, economic, religious and geographic contexts. In
particular, they can be roughly divided into two large classes: (1) patterns grown throughout a
self-organized, fine-grained historical processe; (2) patterns realized over a short period of time as
the result of a single plan (usually exhibiting a regular structure).
Those differences come out from the basic properties of the corresponding graphs. For example,

the cost (defined as the sum of street lengths) assume widely different values, notwithstanding
the fact that we have considered the same amount of land. The properties studied are listed in the
table below.

City N K M W 〈l〉 E Dbox

Ahmedabad 2870 4387 0.262 121037 27.59 0.818 1.92
Bologna 541 773 0.214 51219 66.26 0.799 1.95
Cairo 1496 2255 0.253 84395 37.47 0.809 1.82
London 488 730 0.249 52800 72.33 0.803 1.94
New Delhi 252 334 0.154 32281 96.56 0.766 1.85
Venice 1840 2407 0.152 75219 31.25 0.673 1.81
Vienna 467 692 0.242 49935 72.16 0.811 1.88
Washington 192 303 0.293 36342 119.94 0.837 1.93

Paris 335 494 0.241 44109 89.29 0.838 1.88
Seoul 869 1307 0.253 68121 52.12 0.814 1.87

Barcelona 210 323 0.275 36179 112.01 0.814 1.99
Brasilia 179 230 0.147 30910 134.39 0.695 1.83
Irvine 1 32 36 0.085 11234 312.07 0.755 –
Irvine 2 217 227 0.014 28473 128.26 0.374 1.81
Los Angeles 240 340 0.211 38716 113.87 0.782 1.90
New York 248 419 0.348 36172 86.33 0.835 1.72
Richmond 697 1086 0.279 62608 57.65 0.800 1.78
Savannah 584 958 0.322 62050 64.77 0.793 1.85
San Francisco 169 271 0.309 38187 140.91 0.792 1.90
Walnut Creek 169 197 0.084 25131 127.57 0.688 1.80

Topological properties of all the stud-
ied city networks. We find: num-
ber of nodes N , number of links K,
the meshedness coefficient M , the to-
tal costW , average edge length (in me-
ters) 〈l〉, global efficiency E and fractal
box-counting dimension Dbox.

3.1 Local Properties

Buhl et.al. [5] have proposed a more general measure to characterize the local structure in planar
graphs, the so called meshedness coefficient M defined as:

M =
f

fmax
(1)

where f is the number of faces (excluding the external ones) associated with a graph withN nodes
and K edges, expressed by the Euler formula as: f = K − N + 1. fmax is the maximum possi-
ble number of faces obtained from the maximally connected planar graph, i.e. in a graph with N

nodes and Kmax = 3N − 6 edges. Thus fmax = 2N − 5. The meshedness coefficient can vary from
zero for a tree, to one for the maximally connected planar graph, as in the GT (we will discuss
below).

3.2 Global Properties

The global structural properties of the graphs have been evaluated analyzing the so called global
efficiency E, a measure defined as:

E =
1

N(N − 1)

∑

i,j,i 6=j

dEuclij

dij
. (2)

Where dij and dEuclij are the shortest path length and the Euclidean distance between node i and j

respectively.
Of course, the counterpart of an increase in efficiency is an increase in the cost of construction

i.e., an increase in the number and length of the edges. The cost of construction can be qualified
by using the measure W (i.e. the total street length). To enable comparisons, we thus define a
normalized efficiency and cost measures Erel andWrel as:

Erel =
E − EMST

EGT − EMST
; Wrel =

W −WMST

WGT −WMST
; (3)

The plot Erel vsWrel has a certain capacity to characterize the different classes of cities.

Relative efficiency Erel as a
function of relative cost Wrel

of cities divided into classes
(medieval, grid-iron, etc.).
The point of coordinate (0,0)
would correspond to MST
while the point (1,1) would
correspond to the GT.

4 The Backbone of a City
Centrality is a fundamental concept in network analysis. Herewe show how to construct spanning
trees based on edge centrality to extract the skeleton of a city. For each city we have considered
two centrality measures (Of course other definitions of centrality can be used as well) the between-
ness and the information. The edge betweenness centrality, CB, is based on the idea that an edge
is central if it is included in many of the shortest paths connecting couples of nodes. Likewise,
the edge information centrality, CI , is a measure relating the edge importance to the ability of the
network to respond to the deactivation of the edge itself. Betweennes and information of an edge
α are defined as:

CB
α =

1

(N − 1)(N − 2)

∑

j,k∈G

njk(α)

njk
, (4) CI

α =
∆E

E
=

E(G)− E(G′)

E(G)
; (5)

where G is the considered graph, njk is the number of shortest paths between nodes j and k,
njk(α) is the number of shortest paths between nodes j and k that contain edge α, and G′ is the

graph obtained by removing edge α. We are now ready to build theMaximum Central-
ity Spanning Trees (MCSTs), i.e. maximumweight spanning trees where the edge weight
is set equal to the centrality of that edge.

Spanning trees of Bologna (above)
and San Francisco (below). From
left to right, mLSTs (minimum
spanning tree based on street
length), betweenness-based and
information-based MCSTs.

BOL SAF

Bet Info Bet Info
% common
links with
mLST

82 75 70 76

% of total
centrality in
MCST

86 84 82 95

5 Conclusions
We have proposed a method to characterize both the local and the global properties of spatial
graphs representing urban street patterns and to extract the skeleton of the network. The use of
MST and GT gives the opportunity to compare different cities while the concept of MCST leads to
a meaningful picture of the primary sub-system of a city network.
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