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Introduction



A bit of history ...

Evolution
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A bit of history ...

• 11 Nobel prizes
• 1 Blockbuster movie
• 1 Viral YouTube video (at least)

• https://www.nobelprize.org/prizes/lists/all-prizes-in-economic-sciences
• https://www.imdb.com/title/tt0268978
• https://www.youtube.com/watch?v=S0qjK3TWZE8
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A bit of history ...

Why “individuals” are willing to pay some cost to
provide benefits for themselves and others?
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Game Theory



Basics of game theory

Definition (pairwise-game):
1 The state of a player

corresponds to its strategy

2 Set of m strategies
S ≡ {S1,S2, ... ,Sm}

3 Players are perfectly rational
and have full knowledge of
the others’ strategies.

4 The payoff associated with
each pair of strategies
c(Si ,Sj) ∀i, j ∈ {S1, ... ,Sm}

• Gintis, H. (2009). Princeton University Press.
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Basics of game theory

Definition (pairwise-game):
1 The state of a player

corresponds to its strategy
2 Set of m strategies
S ≡ {S1,S2, ... ,Sm}

3 Players are perfectly rational
and have full knowledge of
the others’ strategies.

4 The payoff associated with
each pair of strategies
c(Si ,Sj) ∀i, j ∈ {S1, ... ,Sm}

Payoff matrix

S1 S2 · · · Sm©­­­­«
ª®®®®¬

S1 cS1,S1 cS1,S2 · · · cS1,Sm

S2 cS2,S1 cS2,S2 · · · cS2,Sm
...

...
... . . . ...

Sm cSm,S1 cSm,S2 · · · cSm,Sm

• Gintis, H. (2009). Princeton University Press.

4/18



Basics of game theory

An example:
• Two strategies: cooperation (C) and

defection (D).

• Four possible strategies’ combinations:
(C,C), (C,D), (D,C), and (D,D).

• We get a 2 × 2 payoff matrix:
Reward R → (C,C) .
Sucker S → (C,D) .
Temptation T → (D,C) .
Punishment P → (D,D) .

cooperator
(C)

defector
(D)
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Basics of game theory

Definition of Nash equilibrium
Given a game played by N players, a set of strategies
S★ ≡ {S1,S2, ... ,SN} is a Nash equilibrium if no player,
i ∈ {1, ... ,N}, can do unilaterally better by changing its
strategy, Si .

• Nash, J. F. Proc. Natl. Aca. Sci. USA, 36, 48–49 (1950).

• Gintis, H. (2009). Princeton University Press.

4/18



Basics of game theory

An example: The Prisoner’s dilemma
• Two robbers are arrested after a bank

robbery and held separately by the
police. However, the police does not
have enough evidences to have them
convicted.

• The prosecutor offers to each robber
the same deal: he can confess (i.e.,
defect) and get a discount on the
sentence, or remain silent (i.e.,
cooperate with the other prisoner) and
get no discount (but a shorter jail time).
• The payoff matrix (jail’s years) is:

• Szabó, G., and Fáth, G. Phys. Rep., 446, 97 (2007).
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• The payoff matrix (jail’s years) is:

Confess Stay
silent

???

• Szabó, G., and Fáth, G. Phys. Rep., 446, 97 (2007).
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Basics of game theory

An example: The Prisoner’s dilemma
• Two robbers are arrested after a bank

robbery and held separately by the
police. However, the police does not
have enough evidences to have them
convicted.
• The prosecutor offers to each robber

the same deal: he can confess (i.e.,
defect) and get a discount on the
sentence, or remain silent (i.e.,
cooperate with the other prisoner) and
get no discount (but a shorter jail time).
• The payoff matrix (jail’s years) is:

C D( )
C R S
D T P

For example:(
−1 −10
0 −7

)
• Szabó, G., and Fáth, G. Phys. Rep., 446, 97 (2007).

4/18



Basics of game theory

C D( )
C −1 −10
D 0 −7

the dilemma
Although the optimal choice would be for both players to cooperate, assuming
that both players will try to maximize their own payoff, the Nash equilibrium
tells us that it best to defect regardless of what the other player will do.

4/18



Basics of game theory

Question:
Given the following payoff matrix:

C D( )
C 10 0
D 7 5

What is the Nash equilibrium?
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Basics of game theory

Question:
Given the following payoff matrix:

C D( )
C 10 0
D 7 5

What is the Nash equilibrium?

Answer
Both (C,C) and (D,D) are Nash
equilibria, albeit the latter is a strict
one.
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Evolutionary Dynamics



Basics of evolutionary dynamics

Foreword:
Evolutionary theory stands on three
pillars:

Replication The ability of an
organism to reproduce.

Selection The ability of a species
to replicate faster than another.

Mutation The ability of creating
new species from the existing
ones.

• Nowak, M. A. (2007). Evolutionary dynamics: exploring the equations of life. Belknap Press.
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Basics of evolutionary dynamics

Replication
Suppose to have a fraction x0 of individuals of species X reproducing
with rate r and study the evolution of the fraction of agents of species
X over (continuous) time.
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Basics of evolutionary dynamics

Logistic equation

dx
dt

= ¤x = rx
(
1 − x

^

) x density of individuals of species X ,
x ∈ [0, 1].

r reproduction rate r ∈ [0,∞[.
^ Carrying capacity ^ ∈ [0, 1].

• Nowak, M. A. (2007). Evolutionary dynamics: exploring the equations of life. Belknap Press.
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Logistic equation

dx
dt

= ¤x = rx
(
1 − x

^

) x density of individuals of species X ,
x ∈ [0, 1].

r reproduction rate r ∈ [0,∞[.
^ Carrying capacity ^ ∈ [0, 1].

Note
In discrete time the logistic equation is equivalent to the so-called logistic map

(May, 1976):

xt+1 = rxt (1 − xt)

• Nowak, M. A. (2007). Evolutionary dynamics: exploring the equations of life. Belknap Press.
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Basics of evolutionary dynamics

x (t) = ^x0 ert

^ + x0 (ert − 1)

0 10 20 30 40 50
Time t

0.0

0.2

0.4

0.6

0.8

1.0

x
(t

)

= 0.75

x0 = 0.025

r= 0.15

r= 0.95

r= 1.75

• Nowak, M. A. (2007). Evolutionary dynamics: exploring the equations of life. Belknap Press.
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Basics of evolutionary dynamics

Selection
Suppose to have an infinite population of individuals of two
species: A and B. Each species reproduces with rate rA and rB,
respectively. The fractions (i.e., relative abundances or densities)
of individuals of species A is x and of species B, y, instead. The
sum of densities is constant (i.e., x + y = 1).

5/18



Basics of evolutionary dynamics

{
¤x = x (rA − i)
¤y = y (rB − i)

where

i = rAx + rBy

{x, y} Species’ densities
x, y ∈ [0, 1]
x (t) + y (t) = 1 ∀t.
{rA, rB} Species’ reproduction

rates .
i Average fitness of the

whole population.

• Nowak, M. A. (2007). Evolutionary dynamics: exploring the equations of life. Belknap Press.
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Basics of evolutionary dynamics{
¤x = x (rA − i)
¤y = y (rB − i)

Since x + y = 1

i = rAx + rBy = rAx + rB(1 − x)

Then
¤x = x

[
rA − rAx − rB (1 − x)

]
= x

[
rA

(
1 − x

)
− rB (1 − x)

]
= x (1 − x) (rA − rB) .
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Basics of evolutionary dynamics

Fixed points

¤x = 0⇔
{
x★ = 0 (all B)
x★ = 1 (all A)

allall

• Strogatz, S. H. (1994). Nonlinear Dynamics And Chaos: With Applications To Physics, Biology, Chemistry

And Engineering. Westview Press.
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Basics of evolutionary dynamics

Solutions’ stability

¤x = x
≥0

(
1 − x
≥0

) (
rA − rB
≶0 ?

)
(
rA − rB

) {
> 0⇔ rA > rB
< 0⇔ rA < rB

• Strogatz, S. H. (1994). Nonlinear Dynamics And Chaos: With Applications To Physics, Biology, Chemistry

And Engineering. Westview Press.
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Basics of evolutionary dynamics

Solutions’ stability

¤x = x
≥0

(
1 − x
≥0

) (
rA − rB
≶0 ?

)
(
rA − rB

) {
> 0⇔ rA > rB
< 0⇔ rA < rB

Note
The stability of the fixed points
does not depend on the
composition of the population
(i.e., x and y).

• Strogatz, S. H. (1994). Nonlinear Dynamics And Chaos: With Applications To Physics, Biology, Chemistry

And Engineering. Westview Press. 5/18



Evolutionary game theory
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Evolutionary game theory

Game theory is not enough because
• Players do not play only once.

• Players are neither smart (i.e., they do not know how to
compute the Nash equilibrium) nor fully rational (i.e.,
they do not act always to maximize their payoff).
• Players do not have full knowledge (i.e., they know all
the entries of the payoff matrix) and tend to learn by
adopting a strategy ensuring them the best success in
the next round.
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Evolutionary game theory

Solution
• Players interact via a game
and play it multiple times.
• Payoff translates into fitness
and success in the game
translates into reproductive
success.
• The reproduction rate depends
on the density of agents (i.e.,
frequency dependent
selection).

• Maynard Smith, J., Price, G. Nature 246, 15–18 (1973).
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Evolutionary game theory

Preamble
Let us consider an infinite
population of individuals of
species A and B, whose relative
abundances are x and y.

Moreover x + y = 1.

Let us denote the fitness of
species A with fA(x, y) and of
species B as fB (x, y),
respectively.
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Let us consider an infinite
population of individuals of
species A and B, whose relative
abundances are x and y.

Moreover x + y = 1.

Let us denote the fitness of
species A with fA(x, y) and of
species B as fB (x, y),
respectively.

{
¤x = x

(
fA(x, y) − i

)
¤y = y

(
fB(x, y) − i

)
where

i = x fA(x, y) + y fB(x, y)

Note
The above equation is known as the
replicator equation.
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Evolutionary game theory

{
¤x = x

(
fA(x, y) − i

)
¤y = y

(
fB(x, y) − i

)
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Evolutionary game theory

{
¤x = x

(
fA(x, y) − i

)
¤y = y

(
fB(x, y) − i

)
As x + y = 1, we can write

i = x fA(x, y)+y fB(x, y) = x fA(x)+(1−x) fB(x)
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Evolutionary game theory{
¤x = x

(
fA(x, y) − i

)
¤y = y

(
fB(x, y) − i

)
As x + y = 1, we can write

i = x fA(x, y)+y fB(x, y) = x fA(x)+(1−x) fB(x)

Then
¤x = x

[
fA(x) − x fA(x) − (1 − x) fB(x)

]
= x

[ (
1 − x

)
fA(x) − (1 − x) fB(x)

]
= x (1 − x)

(
fA(x) − fB(x)

)
.
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Evolutionary game theory

Fixed points

¤x = 0⇔


x★ = 0 (all B)
x★ = 1 (all A)
0 < x★ < 1 (coexist.)

Solutions’ stability

¤x = x
≥0

(
1 − x
≥0

) (
fA(x) − fB(x)

≶0 ?

)
allall coexist.
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Evolutionary game theory

Case study: 2 strategy pairwise games
Let us consider a population of players with two strategies: cooperation (C)

and defection (D). The payoff matrix is:

C D( )
C R S
D T P

6/18



Evolutionary game theory
Intermediate fixed point

¤x = x (1 − x)
(
fC (x) − fD (x)

)
where

fC (x) = xR + (1 − x) S
fD (x) = xT + (1 − x) P

¤x = 0⇔ fC (x) − fD (x) = 0
fC (x) − fD (x) = xR + (1 − x) S − xT − (1 − x) P

= x (R − T ) + (1 − x) (S − P)
= x (R − T ) + (S − P) − x (S − P)
= x (R − T − S − P) + (S − P) .

Thus

fC (x) − fD(x) = 0⇔ x★ =
P − S

R − T − S + P
6/18



Evolutionary game theory

Simplified payoff matrix
One way to reduce the complexity of the

problem is to use a simplified payoff

matrix

C D( )
C R S
D T P

=

C D( )
C 1 S
D T 0

With S ∈ [−1, 1] and T ∈ [0, 2] .

0 1 2
-1

0

1

HG HD

SH PD
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Evolutionary game theory

0 1 2
-1

0

1

HG HD

SH PD

Harmony game (HG)
(S ≥ 0 and T ≤ 1).

Hawk and Dove (HD)
(S ≥ 0 and T ≥ 1).
Note: Known also as Snowdrift
Game or Chicken Game.

Prisoner’s Dilemma (PD)
(S ≤ 0 and T ≥ 1).

Stag Hunt (SH)
(S ≤ 0 and T ≤ 1).

6/18



Evolutionary game theory

0 1 2
-1

0

1

HG HD

SH PD

Harmony game (HG)
(S ≥ 0 and T ≤ 1).

Hawk and Dove (HD)
(S ≥ 0 and T ≥ 1).
Note: Known also as Snowdrift
Game or Chicken Game.

Prisoner’s Dilemma (PD)
(S ≤ 0 and T ≥ 1).

Stag Hunt (SH)
(S ≤ 0 and T ≤ 1).

6/18



Evolutionary game theory

0 1 2
-1

0

1

HG HD

SH PD

Harmony game (HG)
(S ≥ 0 and T ≤ 1).

Hawk and Dove (HD)
(S ≥ 0 and T ≥ 1).
Note: Known also as Snowdrift
Game or Chicken Game.

Prisoner’s Dilemma (PD)
(S ≤ 0 and T ≥ 1).

Stag Hunt (SH)
(S ≤ 0 and T ≤ 1).

6/18



Evolutionary game theory

0 1 2
-1

0

1

HG HD

SH PD

Harmony game (HG)
(S ≥ 0 and T ≤ 1).

Hawk and Dove (HD)
(S ≥ 0 and T ≥ 1).
Note: Known also as Snowdrift
Game or Chicken Game.

Prisoner’s Dilemma (PD)
(S ≤ 0 and T ≥ 1).

Stag Hunt (SH)
(S ≤ 0 and T ≤ 1).

6/18



Evolutionary game theory

x★ =
S

T + S − 1
fC (x) − fD(x) = (S − P) +

+ x (R − T − S − P)
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Evolutionary game theory

x★ =
S

T + S − 1
fC (x) − fD(x) = (S − P) +

+ x (R − T − S − P)

Harmony game
Only two fixed points

x★ =

{
0 → unstable
1 → stable
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Evolutionary game theory

x★ =
S

T + S − 1
fC (x) − fD(x) = (S − P) +

+ x (R − T − S − P)

Prisoner’s Dilemma
Only two fixed points

x★ =

{
0 → stable
1 → unstable
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Evolutionary game theory

x★ =
S

T + S − 1
fC (x) − fD(x) = (S − P) +

+ x (R − T − S − P)

Stag Hunt
Three fixed points

x★ =


0 → stable
0 < x★ < 1 → unstable
1 → stable
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Evolutionary game theory

x★ =
S

T + S − 1
fC (x) − fD(x) = (S − P) +

+ x (R − T − S − P)
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Three fixed points
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Evolutionary game theory
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Evolutionary game theory

Note
The stability of the fixed points (especially of those
corresponding to pure strategies) is intimately related with
the concept of evolutionary stable strategy (ESS)
which is the evolutionary counterpart of the Nash
equilibrium.

6/18



Evolutionary Game Theory on
Graphs



Pairwise games on networks

• Nowak, M. A. Science, 314, 1560, (2006).
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Pairwise games on networks

Network reciprocity

• Each player corresponds to a
vertex of the network and
interacts ONLY with her
neighbors.
• Players play a game and

accumulate payoff according to
its payoff matrix, and then update
their strategies according to
some update rule.
• The dynamics takes place until

the system ends up in one of the
so-called absorbing states (i.e.,
pure strategy equilibria).
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Pairwise games on networks

Update Rules
Replicator (REP): Player i chooses one of her neighbors at
random and compares their payoffs. If fj > fi player i copies j ’s
strategy with probability Π ∝ fj − fi .

• Schlag, K. H. Jour. Econ. Theo., 78, 130, (1998).
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Pairwise games on networks

Update Rules
Unconditional Imitator (UI): Player i looks at all her neighbors
and chooses the one with the highest payoff, j, and copy her
strategy if fj > fi .

• Nowak, M. A., and May, R. Nature 359, 826 (1992).
7/18



Pairwise games on networks

Update Rules
Moran Rule (MOR): Player i chooses one of her neighbors
proportionally to her payoff, and changes her strategy to that of
the chosen one.

• Moran, P. A. P. The Statistical Processes of Evolutionary Theory (1962).
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Pairwise games on networks

Update Rules
Fermi Rule (FER): Player i chooses at random one of her

neighbors, j, compare their payoffs, and copy her strategy with

probability:

Pj→i =
1

1 + e−V(cj−cl)
.

4 2 0 2 4
∆π

0.0

0.2

0.4

0.6

0.8

1.0

P
j
→
i

β= 0.01

β= 1.0

β= 10.0

• Blume, L. E. Games and Economic Behavior, 5, 387 (1993). 7/18



Pairwise games on networks
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Pairwise games on networks

Setup
• Consider a PD game with UI

update.
• Measure the effects of

topology considering a
Watts-Strogatz network with
rewiring probability Y

• Abramson, G., and Kuperman, M. Phys. Rev. E, 63, 030901 (2001).
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Pairwise games on networks

Main results
As we move from a lattice network
(Y = 0) to an ER network (Y = 1),
defection emerges for higher
values of the temptation t.

Note
values of t < 1 do not correspond
to the PD game.

• Abramson, G., and Kuperman, M. Phys. Rev. E, 63, 030901 (2001).
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Pairwise games on networks

Setup
• Consider a PD and Snowdrift

(SG) games with replicator
update.
• Consider different scale-free

BA networks with different
average degree 〈k〉 = z.
• They compare the effects of

degree heterogeneity running
the dynamics also on regular
lattices.

• Santos, F., and Pacheco, J. Phys. Rev. Lett., 95, 098104. (2005)
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Pairwise games on networks

Main results
• The presence of hubs

stimulates the emergence of
cooperation in all the region of
the parameter space (b for PD
and r for SG).
• Increasing the value of z has

a positive effect on
cooperation in BA networks.

Note
They also test size effects, as well
as the role of degree correlations
(by using different models to
generate scale-free networks).

• Santos, F., and Pacheco, J. Phys. Rev. Lett., 95, 098104. (2005) 7/18



Pairwise games on networks

Setup
• Explore the behavior of four

games (HG, HD, PD, and SH)
spanning the T ,S space.
Update the strategies via a
replicator rule.
• Consider four network types:

complete (i.e., mean-field),
single-scale (Gaussian
degree distribution),
scale-free random (i.e.,
configuration model), and
scale-free (BA).

• Santos, F., Pacheco, J., and Lenaerts, T. Proc. Nat. Acad. Sci. USA, 103, 3490 (2006).
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Pairwise games on networks

Main results
• Degree heterogeneity (i.e.,

hubs) amplify the region of the
(T ,S) space where
cooperation thrives.
• Degree correlations in

scale-free networks boost
even more cooperation.

• Santos, F., Pacheco, J., and Lenaerts, T. Proc. Nat. Acad. Sci. USA, 103, 3490 (2006).
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Pairwise games on networks

(C D
C 1 0
D b 0

)
with b > 1

3

1

b

b

1

1

b

b

b

b
payoff accumulation strategy update

Even if cooperators are exploited
by defectors (and accumulate less
payoff on a single pairwise
interaction), cooperator hubs can
accumulate higher payoffs (additive
payoff scheme) taking over
defectors and triggering a
cascade of “conversions,” thus
allowing the onset of full
cooperation.

• Gómez-Gardeñes, et al. Phys. Rev. Lett., 98, 108103 (2007).
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Pairwise games on networks

Payoff schemes
The total payoff of a player i, Π(i), is
equal to:
Additive The sum of all the payoffs

accumulated in each of the games
played, c(i, j): Π(i) = ∑

j c(i, j).
Average The average of the payoffs

accumulated in each of the games
played: Π(i) = 1

ki
∑

j c(i, j).

Note
Alternatively, instead of computing the
average of the payoffs one can introduce
a “participation cost” h.

• Masuda, N. Proc. R. Soc. B., 274, 1815 (2007).
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Pairwise games on networks

Results
• Increasing the participation cost, h,

(top right, bottom right, bottom left)
is detrimental for cooperation.
• We recover the mean-field

cooperation diagram (top-left).

• Masuda, N. Proc. R. Soc. B., 274, 1815 (2007).
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Group games

Public Good Game
• Consider a population of N

players with two possible
strategies, s: cooperation
(s = 1) and defection (s = 0).

• At each round, select a group of
m < N players. Cooperators will
donate c to the public good
whereas defectors give anything.
• Collect all the donations, multiply

them by a factor [ ≥ 1 and
distribute them in equal parts, b,
among all the m players.
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Group games

Public Good Game
• Consider a population of N

players with two possible
strategies, s: cooperation
(s = 1) and defection (s = 0).
• At each round, select a group of

m < N players. Cooperators will
donate c to the public good
whereas defectors give anything.
• Collect all the donations, multiply

them by a factor [ ≥ 1 and
distribute them in equal parts, b,
among all the m players.

Payoff

ci =

{
bi − c if si = 1
bi if si = 0

where

Benefit

bi =
[

(
m−1∑
j

sj c + si c
)

m
.
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Group games

• Hardin, G. Science, 162, 1243 (1968).
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Group games

• Consider N players interacting via a
graph (either a scale-free or a
regular lattice). The groups
correspond to the each node’s
neighbourhood. The enhancement
factor is [ =

r
〈k〉 + 1 ∈ [0,∞[.

• Players accumulate payoff by
playing in their own group as well as
in the groups of their neighbors (i.e.,
player i participates in ki + 1 groups).
• Two participation schemes: fixed

cost per interaction (FCI) and fixed
cost per player (FCP).

• Santos, F. C., Santos, M. D., and Pacheco, J. Nature, 454, 213 (2008).
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What’s next?

• Gómez-Gardeñes, J. et al. Sci. Rep. 2, 620 (2012).

• Cardillo, A., et al. Phys. Rev. E, 90, 052825 (2014).

• Alvarez-Rodriguez, U. et al. Nat. Hum. Behav. 5, 586 (2021).
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What’s next?

• Grujić, J., et al. PLoS ONE 5, e13749 (2010).

• Gracia-Lazaro, C. et al. Proc. Natl. Acad. Sci. USA, 109, 12922 (2012).

• Szekely, A., et al. Nat. Comm. 12, 5452 (2021).

• Sánchez, A. JSTAT, 2018, 024001 (2018).
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What’s next?

update of strategy

Dynamics 1 Evolutionary game

accumulation of payoff
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What’s next?

Motion coordination
(synchro + games)

Vaccination
(epidemic + games)

Comorbidity
(epidemic + games)

• Bauch, C. T., and Earn, D. J. D. Proc. Natl. Acad. Sci. USA, 101, 13391 (2004).

• S., Bohl, et al. Mol. BioSyst., 10, 3044 (2014).

• Antonioni, A., and Cardillo, A. Phys. Rev. Lett., 118, 238301 (2017). 9/18



Summing up ...



Take home messages

cooperator
(C)

defector
(D)

Game theory as a way to model
rational decisions.

10/18



Take home messages

Evolutionary game theory as a way to model
evolution under variable (frequency dependent)

reproduction’s rate.
10/18



Take home messages

Scale-free networks act like a catalyzer for
cooperation.
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Contacts

acardillo@uoc.edu

https://cardillo.web.bifi.es/

@a_cardillo
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