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A novel regime of synchronization, called remote synchronization, where the peripheral nodes

form a phase synchronized cluster not including the hub, was recently observed in star motifs

[Bergner et al., Phys. Rev. E 85, 026208 (2012)]. We show the existence of a more general

dynamical state of remote synchronization in arbitrary networks of coupled oscillators. This state is

characterized by the synchronization of pairs of nodes that are not directly connected via a physical

link or any sequence of synchronized nodes. This phenomenon is almost negligible in networks of

phase oscillators as its underlying mechanism is the modulation of the amplitude of those

intermediary nodes between the remotely synchronized units. Our findings thus show the ubiquity

and robustness of these states and bridge the gap from their recent observation in simple toy graphs

to complex networks. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4824312]

In this work we show a novel synchronization state in

networks of coupled oscillators. This state, called Remote

Synchronization, is characterized by the synchronization

of pairs of nodes that are not directly connected via a

physical link or any sequence of synchronized nodes.

Moreover, remote synchronization is manifested when

considering oscillators having amplitude and phase as

dynamical variables, in contrast to the usual setting in

which phase oscillators are considered, as its underlying

mechanism is the modulation of the amplitude of those

intermediary nodes allowing the exchange of information

between remotely synchronized units. Although some

previous observations of such phenomenon were made in

simple star-like graphs, here we show its ubiquity in the

general framework of complex networks. To this end we

analyze its existence as a robust dynamical state that

appears before global synchronization shows up. Our

findings thus open the door for experimental observations

of this novel state in which the existence of a synchron-

ized pair cannot be associated to a given physical interac-

tion through a single link of the network. In addition, our

results highlight the important difference between the

real (i.e., associated to physical links) and the functional

(i.e., emerging from synchronization) connectivity of a

network.

I. INTRODUCTION

Synchronization constitutes one of the most paradig-

matic examples of emergence of collective behavior in natu-

ral, social, and man-made systems.2–4 Its ubiquity relies on

the general framework in which it occurs: the interaction

between two or more nonidentical dynamical units that, as a

consequence, adjust a given property of their motion. As

coupling between units increases, synchronization shows up

as a collective state in which the units behave in a coordi-

nated way. Synchronization phenomena span across many

life scales, ranging from the development of cognitive tasks

in neural systems5 to the onset of social consensus in human

societies.6

The ubiquity of synchronization in real systems together

with the recent discovery7–11 of their real architecture of inter-

actions has motivated its study when units are embedded in a

complex network.12 In this way, each unit is represented as a

node of a network while it only interacts with those adjacent

units, i.e., those directly coupled via an edge. In the last dec-

ade many studies have unveiled the impact that diverse inter-

action topologies have on the onset of synchrony13–17 and its

stability.18–21 In addition, related issues such as that of adapt-

ive networks, in which the interaction pattern changes accord-

ing to the degree of synchronization of the system, have also

attracted the attention of the community.22–25

The former studies mainly rely on the study of coupled

phase oscillators, such as the Kuramoto model,26,27 which

produces globally synchronized systems as a result of the

direct interaction of pairs of adjacent units. However, it has

been recently found1 that, for more general oscillator models

(in which both amplitude and phase are dynamical variables)

such as the Stuart-Landau (SL) model,3 two oscillators,

which are not directly linked but are both connected to a

third unit, can become synchronized even if the third oscilla-

tor does not synchronize with them. This novel phenomenon,

termed remote synchronization, relies on the modulation of

the amplitude parameter of an intermediary node allowing

the passage of information between two of its neighbors for

their synchronization, even when the former is not synchron-

ized with them. Thus, this tunnel-like mechanism is out of

reach in ensembles of phase oscillators. Although the term

remote synchronization has been used in quite different con-

texts, as, for example, in computer science where it refers to
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synchronization of two or more files located in two, remotely

connected, computers or in some synchronization schemes

for dynamical systems,28 to emphasize the remote location

of the receiver with respect to the transmitter, we will use it

to refer to the novel form of synchronization as reported in

Ref. 1.

Remote synchronization has been found to occur in very

specific and simple topologies, such as star-like networks in

which the central node has a natural frequency different

from that of the leaves. Within this particular setting, it was

numerically and experimentally shown1 that leaves become

mutually synchronized without the need of the synchroniza-

tion of the central node. In this paper, we aim at showing

that remote synchronization is not limited to the particular

configuration of a star-like motif or a tight specification of

the node frequencies. To this end, we introduce a general

procedure for detecting remote synchronization in arbitrary

networks and then discuss the results of our analysis on arbi-

trary complex networks.

II. MEASURES OF REMOTE SYNCHRONIZATION

In Ref. 1, where star motifs were dealt with, remote syn-

chronization is detected by observing that for intermediate

values of the coupling coefficient the synchronization level

among the leaves (measured with the so called indirect
Kuramoto parameter) is higher than that between the hub

and the leaves (measured with the so called direct Kuramoto

parameter). We note that such measures are not applicable to

the general case of arbitrary topologies, since they are based

on an a priori analysis of the network structure which allows

one to establish which nodes can remotely synchronize.

Therefore, in this paper we first introduce a general proce-

dure for detecting remote synchronization in arbitrary net-

works and then show ubiquity and robustness of remote

synchronization in the general case of complex networks.

To this end, we consider a network of N coupled Stuart-

Landau oscillators.3 Each node i is characterized by two var-

iables, ðxi; yiÞT , whose dynamical evolution is as follows:

_xi

_yi

� �
¼

a� x2
i � y2

i �xi

xi a� x2
i � y2

i

 !
xi

yi

� �

þ k
ki

XN

j¼1
aij

xj

yj

� �
�

xi

yi

� �� �
; (1)

where
ffiffiffi
a
p

and xi are, respectively, the amplitude and the

(natural) frequency of oscillator i when uncoupled. The sec-

ond term on the right accounts for the coupling of the dy-

namics of node i with its ki neighbors. The strength of the

coupling is controlled by k (k¼ 0 in the uncoupled limit)

while A ¼ faijg represents the adjacency matrix of the net-

work defined as: (i) for i 6¼ j, aij¼ 1 when nodes i and j are

connected while aij¼ 0 otherwise and (ii) aii¼ 0.

To study the synchronization properties of system (1),

we work with the phase variable of each oscillator, defined

as hi ¼ tan�1ðyi=xiÞ. Then we can measure the degree of syn-

chronization of any (connected or not) pair of oscillators by

means of the time averaged order parameter

rij ¼ jhei½hiðtÞ�hjðtÞ�itj; (2)

where h�it means an average over a large enough time inter-

val and i ¼
ffiffiffiffiffiffiffi
�1
p

. We will consider two nodes as synchron-

ized when rij> d, where d is a constant threshold that we fix

to d¼ 0.8. Nonetheless, we checked that the results pre-

sented are robust as other values of d yield qualitatively the

same outcomes.

Once two nodes i and j are classified as mutually

synchronized we label their relationship according to the fol-

lowing three situations: (i) i and j are directly connected

(aij¼ aji¼ 1), (ii) there is a path of mutually synchronized

nodes between them, and (iii) neither of the former two sit-

uations hold. While the first two cases are similar, as both

are examples of synchronization through physical links, the

third case is analogous to the observed remote synchroniza-

tion in a star-like network, but in the more general context of

a complex network. Thus, we define that two nodes i and j
are remotely synchronized (RS) when they are synchronized

(rij> d) and they are not connected by either a direct link or

a path of synchronized nodes.

To quantify systematically the extent of remote synchro-

nization we count the number of RS nodes, defined as the

number NRS of nodes that appear RS with at least another

node in the network. This allows us to introduce the follow-

ing order parameter: nRS¼NRS/N, representing the normal-

ized number of RS nodes with respect to the total number of

nodes N. Finally, to quantify the importance that remote syn-

chronization has on the dynamics of the system we also mea-

sure the global level of synchronization through the usual

Kuramoto-like order parameter

r ¼ 1

N2

XN

i;j¼1

rij: (3)

Note that r takes into account the contribution of both

synchronized (rij> d) and not synchronized (rij� d) nodes.

III. RESULTS

As two well-known paradigmatic network topologies we

have analyzed both Erd}os-R�enyi (ER) and Scale-free (SF)

graphs. The former type of networks is characterized by a

Poisson distribution P(k) for the probability of finding a node

with k contacts while SF graphs show a power-law distribu-

tion, PðkÞ � k�c. Thus, while in ER graphs most of the nodes

are close to the mean connectivity hki, SF networks display a

large heterogeneity in the number of contacts per node as

revealed from the existence of hubs having ki � hki. For

their construction we have made use of the model introduced

in Ref. 29 that allows one to control the mean connectivity

of both networks in order to be exactly the same. In the net-

works reported in this paper the size and mean connectivity

are fixed to N¼ 100 and hki ¼ 2, respectively. The SF net-

works generated with this model have c¼ 3. Finally, in order

to stay close to the framework used in Ref. 1, we have con-

sidered a bimodal distribution for the natural frequencies of

the oscillators so that nodes with high degree (those analo-

gous to the central nodes in a star graph) present a larger
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frequency, xh, than that, xl, of less connected (the ones play-

ing the role of leaves in the star topology). In particular, we

labeled as hubs those nodes having ki> k* (Ref. 30) and

assigned them xi ¼ xh þ nixh, while for the rest of nodes

xi ¼ xl þ nixl. In the former expressions ni is a random

variable uniformly distributed between �0.025 and 0.025.

In Fig. 1, we show the emergence of remote synchroni-

zation as a function of the two relevant parameters: the cou-

pling strength k and the frequency mismatch of the network

hubs Dx ¼ xh � xl. In particular, we report the behavior of

the global synchronization, r [panels 1(a) and 1(c)] and the

fraction of RS nodes, nRS [panels 1(b) and 1(d)] for SF (top)

and ER (bottom) networks. The results are averaged over 50

different network instances and, for each network, we aver-

age the results over 10 different realizations of the distribu-

tion of natural frequencies.

We find that remote synchronization occurs in both types

of networks in a region of parameters characterized by a

strong frequency mismatch Dx and moderate coupling k. In

fact, for low values of the coupling parameter, nodes cannot

synchronize (either in a direct or remote way) as observed

from the low values of r and nRS. On the contrary, for large

values of k the network is fully synchronized (r ’ 1) and,

accordingly, nRS assumes values close to zero since all the

nodes are mutually synchronized with their neighbors. As

panels 1(a) and 1(c) reveal, the onset of full synchronization

requires greater values of the coupling as the frequency mis-

match increases. In fact, a large frequency mismatch together

with values of coupling under the threshold for complete syn-

chronization favors the onset of remote synchronization, as

observed from the behavior of nRS in panels 1(b) and 1(d).

Compared to SF networks, the values of nRS in ER net-

works are greater, thus indicating that remote synchroniza-

tion in ER networks involves a larger number of nodes.

Moreover, in ER networks the onset of remote synchroni-

zation occurs for lower values of k. ER and SF networks

also show qualitative differences in the appearance of

remote synchronization: by keeping fixed Dx and increas-

ing the value of k, we find that nRS in SF networks show

two peaks, while for ER networks it shows a rise-and-fall

behavior.

In both (ER and SF) cases remote synchronization

appears as an intermediary state before full synchronization

is achieved. However, from the analysis of panels 1(a) and

1(c) one observes that the behavior of r vs. k for a fixed value

of Dx is qualitatively different in SF and ER networks. In

particular, in ER networks (panel 1(c)) a large plateau

around r ’ 0:5 is set in the region where remote synchroni-

zation shows up. In this region, the increase of k does not

contribute to the overall synchronization level, but to a

redistribution of the average oscillation frequencies of the

network nodes.

This is evident in Fig. 2, where the average values (over

the simulation time T) of the instantaneous frequency of

each oscillator are reported along with the parameter nRS.

The results are obtained by increasing k adiabatically from

k¼ 0 so that the system starts from a bimodal distribution as

dictated by the configuration for the natural oscillations. As

k increases, the gap between the two main frequency values

of the bimodal distribution decreases until the network

reaches full synchronization and the nodes oscillate at a com-

mon frequency. The readjustment of frequencies reveals

FIG. 1. Evolution of the degree of

global synchronization r [panels (a) and

(c)] and the number of remotely

synchronized nodes nRS [panels (b) and

(d)] for SF (upper panels) and ER

(bottom panels) networks as a function

of the coupling strength k and the fre-

quency mismatch Dx. In both cases the

networks have N¼ 100 and hki ¼ 2.

The other relevant parameters are fixed

to a¼ 1, xl¼ 1. Remote synchroniza-

tion (high values of nRS) is found for

strong frequency mismatch Dx and

moderate coupling k, while, for low

values of the coupling parameter, nodes

cannot synchronize (r and nRS have low

values), and, for large values of k, the

network is fully synchronized (r ’ 1).
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that, for some values of the coupling, the system undergoes a

strong reorganization, as shown by the spread of the oscilla-

tion frequencies between the two extreme values. This read-

justment coincides with the peaks displayed by nRS in both

SF and ER networks. However, the readjustment seems to

occur faster in SF networks for which the plateau of r is not

observed.

Now we illustrate the role of parameter a. To this end,

we consider a general graph and show that for a� 1

the SL model transforms into a network of Kuramoto

oscillators, so that the amplitude of the oscillators become

decoupled and stationary. We consider Eq. (1) in polar

coordinates

_qi ¼ aqi � q3
i þ

k
ki

XN

j¼1
aijðqj cosðhj � hiÞ � qiÞ;

_hi ¼ xi þ
k
ki

XN

j¼1

qj

qi

aij sinðhj � hiÞ; (4)

where qie
ihi ¼ xi þ iyi. Defining Ri ¼ qiffiffi

a
p , where

ffiffiffi
a
p

is

the value of the amplitude at the equilibrium, Eq. (4) can be

rewritten as follows:

_Ri ¼ aRi � aR3
i þ

k
ki

XN

j¼1
aijðRj cosðhj � hiÞ � RiÞ;

_hi ¼ xi þ
k
ki

XN

j¼1

Rj

Ri
aij sinðhj � hiÞ: (5)

In the first equation we can rescale time according to

dT¼ adt (while the second equation remains unchanged)

dRi

dT
¼ Ri � R3

i þ
k

aki

XN

j¼1
aijðRj cosðhj � hiÞ � RiÞ;

_hi ¼ xi þ
k
ki

XN

j¼1

Rj

Ri
aij sinðhj � hiÞ: (6)

Now as a!1 the coupling term in the amplitude equa-

tion vanishes, and from the analysis of the first equation we

derive that Ri! 1 for all i (in fact Ri¼ 1 is the only equilib-

rium and the dynamics evolve very fast as dT¼ adt and a is

large). In the second equation, Ri ! 1 leads to Ri

Rj
¼ 1 and

thus the second equation becomes

_hi ¼ xi þ
k
ki

XN

j¼1

aij sinðhj � hiÞ: (7)

Therefore, as a ! 1, we recover the model of

Kuramoto purely phase oscillators coupled into a network.

In this limit, we observe that the amplitude equation plays

no role. In this case, the level of RS is very low, as for

instance reported in Fig. 3, where a network of Stuart-

Landau oscillators with a¼ 1 is compared with a network

of Stuart-Landau oscillators with a¼ 1000 and with a net-

work of Kuramoto purely phase oscillators. We note that

for a¼ 1000 the network of Stuart-Landau oscillators is al-

ready a good approximation of the network of Kuramoto

purely phase oscillators. In both the two examples of

networks (SF and ER), for Kuramoto oscillators nRS

(Figs. 3(a) and 3(b)) is lower than in Stuart-Landau oscilla-

tors (with a¼ 1). The lower level of RS in Kuramoto oscil-

lators is more evident when the number of RS links,

labeled as LRS, is examined as in Figs. 3(c) and 3(d), which

shows how the number of RS links is decreased by an order

of magnitude with respect to the case of Stuart-Landau

oscillators (with a¼ 1). This suggests that amplitude mod-

ulation is the main mechanism underlying RS (this was

also shown with other arguments in Ref. 1 for star-like

networks).

To gain more insight into the relation between the re-

gime of remote synchronization and the onset of global syn-

chrony, we now consider the analysis of all synchronized

pairs and its partition into those corresponding to remote

synchronization and those for which a synchronized physical

connection (either a direct link or a path of synchronized

nodes) exists. To this aim, we define gij¼ 1 if nodes i and j
are connected either by a physical link or by a path of

synchronized nodes and gij¼ 0, otherwise. We then intro-

duce the following quantities:

FIG. 2. Evolution of the average oscillation frequency of each oscillator and nRS as a function of k for SF (a) and ER (b) networks. The mismatch of natural fre-

quencies is Dx¼ 1.5 while the rest of parameters are the same as in Fig. 1. The average oscillation frequencies, which for k¼ 0 start from a bimodal distribu-

tion as dictated by the configuration for the natural frequencies, as k is increased tend towards a common value, characterizing full synchronization. The strong

reorganization of the frequencies (characterized by a spread of the oscillation frequencies between the two extreme values) corresponds to the values of cou-

pling for which nRS is peaked.
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fP ¼

XN

i;j¼1
gijHðrij � dÞXN

i;j¼1
Hðrij � dÞ

(8)

and

fRS ¼

XN

i;j¼1
ð1� gijÞHðrij � dÞXN

i;j¼1
Hðrij � dÞ

; (9)

where H(x) is the Heaviside function. Thus, fP and fRS repre-

sent the fraction of synchronized links due to a physical or

remote connection, respectively. Obviously, as fPþ fRS¼ 1,

it is enough to report the behavior of fRS.

In Fig. 4 we show the evolution of fRS vs. k for several

values of Dx. The presence of two peaks in the evolution of

fRS in SF networks reveals a similar behavior to that found for

nRS. As Dx increases, the percentage of RS links increases

and the two peaks shift towards increasing values of k. On the

other hand, for ER networks the percentage of RS links is

higher than in SF networks and fRS shows, as in the case of

nRS, a rise-and-fall trend. The fall in the number of RS links

points out that the network is able to recruit physical links to

get synchronized and thus those regions that appeared as RS

become merged into a single component made of physically

synchronized links.

To visualize the progressive substitution of RS links by

physical ones in the path towards full synchronization, we

show in Fig. 5 for an ER network (with Dx¼ 2.8) snapshots

of both remotely and physically synchronized links for two

values of the coupling k. In Figs. 5(a) and 5(c) we plot two

networks corresponding to physically and remotely

synchronized links, respectively, when k¼ 1.65. In this case

the network is divided into several clusters of physically

synchronized nodes (the color of the nodes corresponds to

the cluster of physically synchronized links they belong to)

FIG. 4. Evolution of the fraction of RS

links, fRS, in SF (a) and ER (b) net-

works as a function of the coupling

strength k, and for different values of

Dx. The remaining parameters are set

as in Fig. 1. The fraction of RS links

first increased as k is increased, with

one (in ER networks) or two peaks

(in SF networks) as observed for the

evolution of nRS, and then falls as net-

works recruit physical (instead of RS)

links to get synchronized.

FIG. 3. Comparison of nRS (a) and

(b) and LRS (c) and (d) in a SF (a) and

(c) and ER (b) and (d) network of

Stuart-Landau oscillators with a¼ 1 or

a¼ 1000 and a network of Kuramoto

purely phase oscillators for Dx¼ 2.6.
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FIG. 5. Evolution of components of

physically (a) and (b) and remotely (c)

and (d) synchronized nodes in an ER

network with Dx¼ 2.8, when k is

increased by adiabatic continuation

from k¼ 1.65 (a)–(c) to k¼ 1.70

(b)–(d). Nodes are colored according

to the physically synchronized compo-

nent they belong to when k¼ 1.65, i.e.,

in (a). The remaining parameters are

the same as in Fig. 1. At k¼ 1.70 two

communities (the one with blue nodes

and the one with cyan nodes), that were

remotely synchronized at k¼ 1.65, fuse

into a single one and, as a consequence,

the RS links between the two commun-

ities existing for k¼ 1.65 disappear at

k¼ 1.70.

FIG. 6. Evolution of components of physically (a), (b), (c) and remotely (d), (e), (f) synchronized nodes in an ER network with Dx¼ 1.5 and hki ¼ 2, when k is

adiabatically increased. Nodes are colored according to the component to which they belong in (a) and, then, represented with the same colors in (b)–(f). The net-

works correspond to the following value of k: (a) and (b) k¼ 1.75; (c) and (d) k¼ 1.80; (e) and (f) k¼ 1.85. For progressive increase of the coupling coefficient,

first three of the four communities, existing at k¼ 1.75 and synchronized thanks to RS links, merge and, correspondingly, the RS links between these communities

disappear, and, then, the fourth community (synchronized with the other three, already at k¼ 1.80 thanks to RS links) aggregates to the previous ones.
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and some nodes of these clusters appear remotely synchron-

ized with nodes belonging to different clusters [as shown in

Fig. 5(c)]. When k is increased to k¼ 1.70, two of these clus-

ters merge together [Fig. 5(b)] through two physically

synchronized links that connect each cluster to a new node

synchronized to each of them. Thus, at k¼ 1.70 two com-

munities that were remotely synchronized at k¼ 1.65, fuse

into a single one and, as a consequence, those RS links

between the nodes of the two communities reported for

k¼ 1.65 in Fig. 5(c) disappear at k¼ 1.70 [Fig. 5(d)]. We

note that the choice of the threshold d may impact in which

nodes are assigned to which groups, although we have

observed qualitatively similar results when the threshold is

changed. In fact, the evolution of communities remains the

same, although the value of k at which they merge may be

slightly different.

A further example of the merging of RS clusters is

shown in Fig. 6. We consider an ER network with Dx¼ 1.5

and hki ¼ 2, when k is increased with continuation from

k¼ 1.75 to k¼ 1.85. For k¼ 1.75, the network is divided

into four main components of physically synchronized nodes

plus some small communities and isolated nodes (Fig. 6(a)).

The analysis of the components of RS nodes (Fig. 6(d))

reveals that there are RS links between the four commun-

ities. In fact, increasing the coupling to k¼ 1.80 three of

these communities merge (Fig. 6(b)) and, correspondingly,

the RS links between these communities disappear (Fig.

6(e)). Finally, a further increase of k (k¼ 1.85 in Fig. 6(c))

leads to the aggregation of the fourth community (the bigger

one) to the previous ones. Also in this case, almost all the RS

links disappear (Fig. 6(f)) and very few RS links are

observed for k¼ 1.85.

IV. CONCLUSIONS

In this paper we have provided measures to study

remote synchronization in general complex networks. This

phenomenon relies on the mutual synchronization of pairs

of uncoupled nodes. Each remotely synchronized pair of

nodes is thus physically connected through an intermediary

node (not synchronized with them) or a sequence (path) of

intermediary nodes. This is an important difference with

another form of remote synchronization reported in Ref. 31,

where the analysis focused on the distribution of phase lags

in a network of homogeneous oscillators (all oscillating at

the same frequency) and a relationship between modules

appearing in the network structure and the pattern of phase

lags was revealed. The analysis we have presented reveals a

stronger condition in that, according to our results, two RS

nodes do not show any form of synchronization with inter-

mediate nodes.

Although the original discovery of remote synchroniza-

tion was restricted to a rather particular setup, a star graph,

the analysis carried out in this paper, through the introduc-

tion of appropriate indicators, reveals that remote synchroni-

zation is common in general complex networks, such as

Erd}os-R�enyi and Scale-free graphs of coupled oscillators

having amplitude and phase as dynamical variables. The

addition of amplitude as a dynamical variable, in contrast

with the typical framework of networks of coupled

phase-oscillators, provides the observation of remote syn-

chronization and elucidates an important role played by it. In

fact, we have found that remote synchronization constitutes

a mechanism anticipating synchronization by physical links

in networks with heterogeneous distribution of natural fre-

quencies. Our results indicate that, in these networks, com-

munities of nodes synchronized through RS links appear for

values of coupling just lower than those allowing the merg-

ing of these communities through physical links. As synchro-

nization is ubiquitous in natural and man-made systems, we

suggest that this can be an important mechanism to explain

the emergence of communities of synchronized nodes, not

connected by physical links.

Our work suggests that remote synchronization is not

significant for ensembles of phase oscillators, since its main

underlying mechanism seems to be the modulation of the

amplitude of intermediary nodes allowing information

transfer between uncoupled pairs of nodes. In fact, when

similar settings are applied to phase oscillators, a different

phenomenon is observed, namely, that of explosive
synchronization17 in which the typical second-order syn-

chronization transition transforms into a first-order one. In

its turn, remote synchronization appears as a rather robust

state prior the onset of global synchronization since for a

wide range of coupling strengths almost all the nodes are

remotely synchronized with, at least, another one while the

level of global synchronization remains small. Thus, our

results open the door for experimental observations of this

novel state in which the existence of a synchronized pair

cannot be associated to a given physical interaction through

a single link of the network and highlight the important dif-

ference between the real (i.e., associated with physical

links) and the functional (i.e., emerging from synchroniza-

tion) connectivity of a network.
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