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Abstract. This paper examines the relationship between street centrality and densities of commercial
and service activities in the city of Bologna, northern Italy. Street centrality is calibrated in a multiple
centrality assessment model composed of multiple measures such as closeness, betweenness, and
straightness. Kernel density estimation is used to transform datasets of centrality and activities to
one scale unit for analysis of correlation between them. Results indicate that retail and service acti-
vities in Bologna tend to concentrate in areas with better centralities. The distribution of these
activities correlates highly with the global betweenness of the street network, and also, to a slightly
lesser extent, with the global closeness. This confirms the hypothesis that street centrality plays a
crucial role in shaping the formation of urban structure and land uses.

1 Location and centrality in a city
“No matter how good its offering, merchandising, or customer service, every retail
company still has to contend with three critical elements of success: location,

location, and location Taneja (1999, page 136).

What is location? Why does it matter? A simple and intuitive answer is: centrality.

A central place has one special feature to offer to those who live or work in a city:
easy accessibility from immediate surroundings and more distant places. Accessibility
may be transformed to visibility and popularity. Therefore, a central place tends to
attract more customers and has a greater potential to develop into a social catalyst.
Important landmarks such as museums, theatres, or office headquarters favour the
central locations. A more central location commands a higher real estate value and
is occupied by a more intensive land use. Central locations in an urban area have the
potential to sustain higher densities of retail and services, and are a key factor for
supporting the formation and vitality of urban ‘nodes’ (Newman and Kenworthy, 1999).
Centrality emerges as one of the most powerful determinants for urban planners
and designers to understand how a city works and to decide where renovation and
redevelopment need to be placed.

Centrality not only affects how a city works today, but also plays an important role
in shaping its growth. If one looks at where a city centre is located, it is most likely to
sprout from the intersection of main routes, where some special configuration of the
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terrain or some particular layout of the river system (or water bodies in general) makes
the place compulsory to pass through. That is one of the dominant theories that
explain where a city begins. Then, departing from such central locations, the city grows
up over time with gradual additions of dwellings, residents, and activities: first along
the main routes, then filling the in-between areas, and then developing streets that
realize loops and points of return. As the structure becomes more complex, new
central streets and places are formed and stimulate a growth in the number of residents
and activities around them. This evolutionary process has been driving the formation
of urban fabrics and the advancement of human civilization throughout most of the
seven millenniums of city history.

Centrality appears to be somehow at the heart of that marvellous hidden order that
supports the formation of ‘spontaneous’ and organic cities (Jacobs, 1961; 1993). It is
also a crucial issue in the contemporary debate on searching for more bottom-up and
‘natural’ strategies of urban planning beyond the modernistic heritage. Centrality has
been studied in many branches of urban research, especially in economic geography
and regional analysis (Wilson, 2000) and in transportation planning (Goulias, 2002;
Meyer and Miller, 2000). In most cases centrality has been dealt with as a means of
measuring the relationship between activities among places. In essence, this has led to
an interpretation of centrality through an intuitive notion that a more central location
is a place ‘closer’ to all others. In urban planning and design, centrality is the core issue
addressed by space syntax, a methodology of spatial analysis, through the notions of
‘visibility’ and ‘integration’ (Hillier, 1996; Hillier and Hanson, 1984). Space syntax has
opened a whole new range of opportunities for urban designers to develop a deeper
understanding of several structural properties of city spaces. The model has achieved
significant successes in the practice of countless urban regeneration programmes in the
UK and elsewhere, and has helped urban planners and designers in making good
decisions and reframing the debate on pivotal issues such as crime, self-surveillance,
community building, and renovation of large housing estates in the last two decades or
so. Despite these successes, urban designers often perceive space syntax as a quantita-
tive threat to the creativity embedded in the art of city design, while on the other side
researchers in spatial analysis and geocomputation often find it lacks rigorous expression
and clear disciplinary references.

The multiple centrality assessment (MCA) model follows broader traditions in
centrality assessment, which draw on structural sociology since the early 1950s (Bavelas,
1948; 1950; Freeman, 1977; 1979; see also an overview by Wasserman and Faust, 1994),
and the more recent new physics of complex networks (Boccaletti et al, 2006). Imple-
menting these traditions in a spatial environment, MCA works at the forefront of a
growing wave of interest for geographic information research (Batty, 2005). Therefore,
the MCA model shares with space syntax the fundamental values that refer to the
structural interpretation of urban spaces for urban planning and design, while offering
a new and deeply alternative technical perspective (Cardillo et al, 2006; Crucitti et al,
2006a; 2006b; Porta et al, 2006a; 2006b; Scellato et al, 2006; Scheurer and Porta, 2006;
Scheurer et al, 2007).

The hypothesis for this study is that centrality captures the essence of location
advantage in an urban area, and its values should be reflected in the intensity of land
uses—in this case, densities of retail and service activities. We test the hypothesis in
Bologna, a northern Italian city. The remainder of this paper is organized as follows.
Section 2 describes the study area and data preparation. Section 3 reviews the MCA
model for measuring urban network centralities. Section 4 shows how kernel density
estimation (KDE) is used to transform both the MCA measures and densities of retails
and services to one scale unit, which permits the correlation analysis between them.



452 S Porta, V Latora, F Wang, and coauthors

Section 5 presents the analysis results with some discussion. The paper is concluded
in section 6 with a brief summary.

2 Study area and data preparation

Bologna is a regional capital in northern Italy with some half a million residents. It is
an important urban centre located in the middle of the River Po Plain. Historical
major routes connecting Florence and southern Italy with northern Italy converge
here (see figure 1). Bologna is a relatively wealthy city and a national transportation
hub with a rich history and culture: it is where the ‘Alma Mater’, the most ancient
university in the world, originated. The aim of this study is to examine how the variation
of street centrality (measured by the MCA model) correlates with the distributions of
retail shops and community services in Bologna.
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Figure 1. Location of Bologna in northern Italy.

Data for this study were provided by the municipality of Bologna in two separate
datasets. The first dataset is an ArcGIS (ESRI Inc., Redlands, CA) point shapefile
including all ground-floor retail and service activities in Bologna in 2003. Each of the n
activities is indicated in the following as X;, where i = 1, 2, ..., n. In Bologna these
retail and service entities are in general comparable in floor size. Ideally, we would like
to have the data of floor space or even the rental value for each activity to capture
more effectively the intensity of land uses. We are in the process of collecting such
data and will report the results when available. For the purpose of this study, we
then extracted two separated layers from this dataset: one for retail shops alone
(Meomm = 7257 points), and one for retail and service activities altogether
(Meommisery = 9676 points). The second dataset is an ArcGIS line shapefile containing
all streets in Bologna in 2004. The street network has 7191 street segments (edges) and
5448 intersections (nodes). Figure 2(a) shows the distribution of retail (commercial)
and service activities on the street network in Bologna.

3 Measuring urban network centralities with multiple centrality assessment

The MCA model focuses on measuring centrality in urban networks constituted by
streets as links (or edges), and by intersections as nodes. The main characteristics of the
MCA are: (1) utilizing a standard ‘primal’ format for the street network representation;
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(2) anchoring all measures on a metric computation of distances along the real street
network; and (3) defining centrality by a set of multiple peer indices (Porta et al,
2006b). While the first two characteristics differentiate the MCA from space syntax,
the third one makes it distinctive from traditional regional analysis, transportation
planning, and urban geography. The MCA model in fact measures a location as ‘being
central’ not only in terms of being close to all others, but also in terms of being the
intermediary between others, being accessible via a straight route to all others, and
being critical for the efficiency of the system as a whole.

Results from the MCA analysis include several maps of a street network, each of
which shows one set of centrality values for the edges of the network. The following is a
brief review of the MCA model. For more detailed discussions of MCA, see the
references cited in section 1.

Streets (links or edges) are represented in a GIS system as linear features with two
end nodes and, possibly, one or more intermediate vertices. The MCA model assigns a
set of centrality values to each street segment (Crucitti et al, 2006a; 2006b; Porta et al,
2006a; 2006b). Here we discuss three of them: closeness (C), betweenness (C®), and
straightness (C3).

Closeness centrality C© measures to what extent a node is close to all the other
nodes along the shortest paths of the network. C€ for a node i is defined as:
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where N is the total number of nodes in the network, and d;; is the shortest distance
between nodes i and j. In other words, the closeness centrality for a node is the inverse
of the average distance from this node to all other nodes.

After calibrating the shortest path between any two nodes, it is straightforward to
compute C€ for all the nodes in the network. C may be interpreted as proximity, and
also captures the notion of accessibility of a place. The closer a place is to other places,
the more accessible it is. The family of closeness measures has been widely used in
urban and regional analysis. In essence, it reflects the cost of overcoming spatial
separations between places with population and activities.

Betweenness centrality C® is based on the idea that a node is more central when it is
traversed by a larger number of the shortest paths connecting all couples of nodes in
the network. C® is defined as:
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where n; is the number of shortest paths between nodes j and k, and n; (i) is the
number of these shortest paths that contain node i. Using a social network analogue,
C® is like the kind of prominence of a person who acts as intermediary among a large
number of other persons. In MCA terms, C® captures a special property for a place in a
city: it does not act as an origin or a destination for trips, but as a pass-through point.
C® represents a node’s volume of through traffic. A place with better betweenness may
benefit from this important property.

Straightness centrality CS originates from the idea that efficiency of communication
between two nodes increases when there is less deviation of their shortest path from
the virtual straight line connecting them—that is, a greater ‘straightness’ of the shortest
path. C® is defined as:
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where d,f”d is the Euclidean distance between nodes i and j, or the length of the virtual
straight connection.

C® was originally proposed in nonspatial networks as a normalization procedure
(Vragovic et al, 2004). In spatial networks C*® reveals a totally different meaning related
to human cognitive processes in navigating complex spatial structures. C® measures the
extent to which a place can be reached directly, on a straight line, from all other places
in a city. This is a quality that makes it prominent in terms of ‘legibility’ and ‘presence’
(Conroy-Dalton, 2003).

In this study all three global centrality indices were calculated first, as all nodes and
edges in the network participated in the computation: namely, global closeness Cgclob,
global betweenness Cg‘?(,b, and global straightness Cgslob. As an example, figure 2(c)
shows the variation of global betweenness CgB]ob across the street network in Bologna.
In addition, two local centrality indices were calculated for the nodes located within a
certain distance d from each node i. As shown in a previous study (Porta et al, 2006b),
local measures are useful to overcome the edge effect—that is, the distortion that
lowers the centrality values near the edge of a network. Such a distortion turns out
to be very significant for the closeness index when calculated on highly fragmented
networks. Moreover, the global centrality measures do not reveal network properties
on a local scale, whereas local measures nicely capture properties of space at the
neighbourhood or district scale that have to do with a nonmotorized experience of
cities. In Bologna the search range for local centrality measures was set at d = 800 m,
and, therefore, the local closeness and local straightness are denoted as Cy,, and Cg,
respectively.

We have developed an ArcGIS extension to prepare the street network data for
MCA computation. The module first cleans up the street network in an ArcGIS
shapefile format for most common errors, then generates nodes at intersections and
links the node identification to the polyline attribute table, and finally generates a
‘connectivity table’ that stores, for each street, its length, identification of the two end
nodes, and their coordinates. The connectivity table is then processed outside of GIS
by a C++ script that computes centralities of each node and each street (ie the average
centrality values of the street’s two end nodes). The result from the C++ program is
fed back to ArcGIS for mapping and other spatial analysis such as the KDE in the
next phase.

4 Using kernel density estimation to compute densities of street centralities and retail
and service activities

4.1 Transforming data to one analysis unit

The objective of this research is to examine whether the variation of street centralities
is indeed reflected in the intensity of land uses—in our case densities of retail and
service activities in Bologna. In accordance with the MCA model, three centralities
(C®, €, and C®) for each of the 5448 nodes were computed, on the basis of which,
centralities for each of the 7191 edges were calculated as the average of two end nodes.
Correspondingly, there were 7257 retail shops (or 9676 retail shops and service facilities
altogether) in the study area. The street network and points of retail and service
activities were two distinct spatial features. In order to analyze the relationship
between them our first task was to transform the two datasets to one scale (analysis
unit), so that such a comparison could be made.

Several approaches may be employed to facilitate such a comparison study. One is
to use the distribution of retail and service activities as the base framework, to
compute the street network centralities at (or around) each retail and service facility,
and then to examine the relationship between them. The second approach is the other
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way around—that is, computing the density of retail and service activities along each
street and matching with the centralities for that street. The third approach is to
transform both activities to a new framework (eg a raster system), and to examine
the relationship between the street centralities and land-use intensity at the same scale.
In all cases, data transformations from one scale or analysis unit to another utlize
spatial smoothing and/or spatial interpolation techniques (Wang, 2006, page 47). The
current research uses the third approach, mainly for the convenience of taking advan-
tage of some built-in tools available in ArcGIS. Our future work will explore the first
and second approaches.

There are also rich choices of spatial smoothing (eg floating catchment area, KDE,
and empirical Bayes estimation) and spatial interpolation methods (eg trend surface
analysis, inverse distance weighted, thin-plate splines, and kriging) (Wang, 2006,
pages 35-53). Here, the KDE method was used. Basically, the KDE uses the density
within a range (window) of each observation to represent the value at the centre of the
window. Within the window, the KDE weighs nearby objects more than distant objects,
on the basis of a kernel function (Bailey and Gatrell, 1995; Fotheringham et al, 2000,
pages 146—149; Silverman, 1986). By doing so, the KDE generates a density of the events
(discrete points) as a continuous field (eg raster), and therefore converts the two datasets to
the same raster framework and permits the analysis of relationships between them. The
roots of KDE may be traced back to several pioneering studies in mathematical
statistics (Akaike, 1954; Parzen, 1962; Rosenblatt, 1956), and it has since been used in
many fields such as geography, epidemiology, criminology, demography, ethology,
hydrology and others, including two recent examples (Anselin et al, 2000; Borruso,
2003).

While the choice of a particular smoothing or interpolation technique should not
affect the outcome of this research, our choice of KDE was made for at least three
reasons.

e First, and most importantly, by using the density (or average attributes) of nearby
objects to represent the property at the middle location, the KDE captures the
very essence of location measured by centralities and reflected by densities of
retail and service facilities. In contrast to studies of a direct correlation between
street integration and socioeconomic and environmental indicators (eg Penn and
Turner, 2003), this approach emphasizes that it is not the place itself but rather
its surroundings that make it special and explain its setting. Using the KDE
here is not only a requirement for converting the data scale but also a necessity
for accurately capturing the true intention of analyzing the relationship between
two neighbourhood features.

e Secondly, the KDE uses a kernel function to value the contribution of a nearby
object to the density estimate more than a remote one, as stated in Tobler’s
(1970) first law of geography—that is, “everything is related to everything else,
but near things are more related than distant things.” This property of distance
decay for spatial interaction is widely recognized by urban researchers. The family
of gravity models follow the same notion with strong theoretical foundations and
have many successful applications in urban and regional studies (Fotheringham
et al, 2000, pages 213 —235).

e Finally, the KDE is a standard tool in the ArcGIS spatial analyst module, and
the results can be easily integrated in ArcGIS for mapping.
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4.2 Kernel density estimation

A kernel function looks like a bump centred at each point x; and tapering off to zero
over a bandwidth or window. The kernel density at point x at the centre of a grid cell is
estimated to be the sum of bumps within the bandwidth:

- 1 & X —X;

J(x) = nh,.ZK< . ) “)
where K is the kernel function, % is the bandwidth, » is the number of points within the
bandwidth, and # is the total number of events. All events x; within the bandwidth of x
generate some bumps reaching the point x, and contribute to the estimated kernel
density there.

The kernel function K(y) is a function satisfying the normalization for a two-
dimensional vector y such as:

JRZ K(y)dy = 1.

A regularly adopted kernel is the standard normal curve:

K(y) = <2n>”2exp<;y2).

For convenience, our computation in ArcGIS used the following kernel function, as
described in Silverman (1986, page 76):

K(y) — {(3n)‘(1—y2)2, if y? < 1,

0, otherwise.

®)

One advantage of equation (5) is its faster calculation than the regular kernel. As
the formula indicates, any activity beyond the bandwidth / from the centroid of the
considered cell does not contribute to the summation.

For our study area, the raster framework is a rectangular region R with 2771956
grid cells, and each cell is a 10 m x 10 m square. Experimenting with other cell sizes
yielded similar results. The following explains how the distributions of retail shops and
services and the centrality indices of street networks are both transformed to this raster
system by the KDE method.

4.3 Estimating kernel densities of retail and service activities and street centralities

As discussed in section 2, retail and service facilities are represented as points in a GIS
system. Such points were also provided with information about the size of the shop or
service, but we decided in this first application to correlate just with the presence of
shops and services—that is, their broad numer and location—and to leave more
detailed analysis to further investigations: therefore facilities were not weighted here.
ArcGIS has a built-in tool for kernel estimation. To access the tool in ArcGIS, click the
Spatial Analyst dropdown arrow > Density > choose Kernel for Density Type in the dia-
logue. Applying the tool to the dataset of retail and service activities yielded the kernel
densities. For this study we computed the densities of retail shops alone, and also
the densities of retail (commercial) and service activities together in Bologna.

To compute the kernel densities of the street network we used centrality values for
each street segment (edge) to weigh the contribution of each edge to the kernel ‘bump’
within a grid cell. In other words, a kernel function is applied to each street, yielding
values which are greatest on the line, diminish with distance from the line, and reach 0
at the distance / from the line. Unlike the densities of retail or service activities,
the kernel density of street centrality at each grid cell in region R is the sum of all the



Street centrality in Bologna 457

kernel surfaces within the bandwidth multiplied by the value of centrality at each
surface. In ArcGIS, this is implemented by selecting one of the centrality indices as
the ‘population’ (weight) field. By doing so, we are not computing just the density of
streets, but the density of street centrality.

One problem in using the KDE is the choice of a particular kernel function and
bandwidth /4. Several methods have been proposed to pick up the best kernel function
(Fotheringham et al, 2000, pages 155—157) or to optimize /4 (Cao et al, 1994) according
to the global structure of the dataset. However, Epanechnikov (1969) finds that the
choice among the various kernel functions does not affect significantly the outcomes
of the process. Williamson et al (1998) and Levine (2004) point out that the choice of
bandwidth is an important issue in any KDE application. Recent advancement has
suggested using an adaptive, rather than fixed, bandwidth 2—that is to say, / is larger
in areas where events are sparser, and smaller where they are denser (Brunsdon, 1995;
Fotheringham et al, 2002).

As explained earlier, the KDE is not the methodological focus of this research, and
is used here to transform the two data features to the same analysis unit. Our study
used a fixed bandwidth, but we did experiment with different /# values to show the
robustness of the results. The choice of a fixed bandwidth pertains to the purpose of
the study: we are interested in understanding the relationship between the street net-
work and basic services in an ordinary city. In Bologna we chose # = 300 m, 200 m

Table 1. Twenty-one raster layers from kernel density estimation (KDE) in Bologna. MCA
denotes multiple centrality assessment.

Layer Centralities KDE
index description MCA bandwidth
distance distance

factor d(m)  factor h(m)

1 Cjob global betweenness centrality all 300
2 CgC,Ob global closeness centrality all 300
3 C:lob global straightness centrality all 300
4 Cgﬁob global betweenness centrality all 200
5 Cgclob global closeness centrality all 200
6 Cgsk,h global straightness centrality all 200
7 Cgob global betweenness centrality all 100
8 Cgcl‘Ob global closeness centrality all 100
9 Cgs;ob global straightness centrality all 100
10 CSo local closeness centrality 800 300
11 Cao local straightness centrality 800 300
12 Csoo local closeness centrality 800 200
13 Cao local straightness centrality 800 200
14 Cso local closeness centrality 800 100
15 Cso local straightness centrality 800 100
16 comm +serv  retail commerce and commercial service 300
17 comm retail commerce 300
18 comm +serv  retail commerce and commercial service 200
19 comm retail commerce 200
20 comm +serv  retail commerce and commercial service 100

21 comm retail commerce 100
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Figure 2. [In colour online, see http://dx.doi.org/10.1068/b34098] Density of activity and street
centrality: (a) location of commercial and service activities (red dots); (b) kernel density estima-
tion (KDE) (2 = 300 m) of commercial and service activities; (c) street global betweenness Cjob
(blue for lower values and red for higher); (d) KDE (2 = 300 m) of C;Oh.

and 100 m, which are widely used in urban planning and design to model the pedes-
trian catchment area at the scale of neighbourhood, block, and street, respectively
(Calthorpe and Fulton, 2001; Cervero, 1998; 2004; Frey, 1999; Urban Task Force, 1999).

In summary, the KDE analysis was performed on: (1) two point layers (one is retail
shops and the other is retail and service activities altogether) using no weights, and (2)
the street layer using five different weights (Cgors Catops Caions Cioo» and Cgyg). For
each of these seven measures, three bandwidths (4 = 100 m, 200 m, and 300 m)
were tested, yielding a total of twenty-one kernel density raster layers (see table I).
For example, figure 2(b) shows the KDE of retail and service activities, and figure 2(d)
shows the KDE of global betweenness (Csob) of the street network in Bologna. Both
used a bandwidth of 300 m.

5 Analyzing the relationship between street centralities and retail and service activities
The above KDE analysis converted the measures of street centralities and the densities
of retail and service activities to the same raster framework, where each cell contains
attributes in multiple raster layers (see figure 3) for an illustration). In this section we
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Correlation Table

CELL_ID KD_1 KD_2 KD_3 ... KD_21
001 KD_1 001 KD_2 001 KD_3 001 ... ... KD_21 oo1
KD_1 KD_2 KD_3 s e KD_21
KD_1 KD_2 KD 3 . ... KD_21
—_—— 2?2 __ _KD 1232 KD_2232 KD_3232 ...... KD_21 232
233 K”\L1 233 KD 2233 KD 3233 ..... KD 21233
234 KD_1 233 KD_2 234 KD, 3 234 ..,... KD_21 234
235 KD 1 235 KL_TZ 235 KL‘PJ 235 ..|... KD 1 235
236 KD _1 236 KLl 2 236 KCl 3236 .. KD '|1 236
237 KD 1237 KCI 2 237 KE|73 237 .. KD_:i1 23
KD 1. Kcl2. kcl3 KD_:1
kp 1. ko2 kcl3 KD_:i1

Figure 3. Illustration of a grid cell with attributes in various raster layers. KD denotes kernel
density.

evaluate the statistical distribution of each of the density measures in the raster layers,
and analyze the relationship between the densities of street centralities and the
retail and service activities. For the latter, one of the two activity variables is paired
with each of the five street centrality variables to examine their relationship—that is,
2 x 5 = 10 pairs of relationships. Only variables calculated at the same bandwidth can
be matched—for example, the density of Cgclob with 4~ = 300 m matches with that of
retail shops with & = 300 m; with three bandwidths tested, this led us to examine
thirty correlations.

5.1 Density distributions of street centrality and commercial and service activities

Figure 4 shows the distribution of density of activities for the case # = 300 m. Namely,
we report the number of cells with a density of activities (in this case, commercial and
service activities) in the range [a, a + Aa]. The increment was set to be equal to
Aa = 3.396 x 107°. The distribution follows closely the power law, which is a straight
line in the log—log scale used in the plot. That is to say, as the density declines, the
number of cells increases geometrically. Higher density areas are few, and lower density
areas are plentiful. Results for the density of retail shops and other bandwidths are
very similar to figure 4, and are thus not shown here.
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Figure 5. Distribution of kernel densities of street centrality (2 = 300 m) in Bologna.

We now examine how many cells have a density range of a centrality index c.
Figures 5(a) - 5(d) show only four of the fifteen centrality indices calculated by MCA,
namely global betweenness [Csob, in figure 5(a)], global straightness [Cgslob in fig-
ure 5(b)], global closeness [Cgclob in figure 5(c)], and local closeness evaluated within
800 m [Cyy in figure 5(d)]. In all four cases the KDE bandwidth was 7 = 300 m.
Defining the density range as [c, ¢ + Ac], the increment Ac = 45310 for Cgob,
Ac = 476902 for Cgslob, and Ac = 1767 for both Cgclob and Cg,. All centrality measures
exhibit significant variations across Bologna. Such a wide range of difference

in centrality reflects the typical concentric structure of the medieval street network.
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The concentration of best centrality in a very few places indicates that the best
accessibility to the functional backbone of community life is enjoyed only by a small
segment of the population or businesses. This appears to be the natural outcome of a
historical evolution of Bologna’s street network. Among the four centrality densities,
the distribution of CgBlob [shown in figure 5(a)] is the only graph in a log-Ilog scale.
It resembles most that of the commercial and service activities, and can be fitted by a
power law. This indicates that the distribution of betweenness is the most heteroge-
neous one: in fact, the density values of Cg'i,b span from 10 to over 1000, with over
100 000 cells having a density equal to 10 and only a few hundred cells having a density
larger than 1000. The distributions of the other three centralities (Cgslob , CSops and Csp
exhibit more uniform patterns with rapidly declining tails. Note that for C,, [shown in
figure 5(c)], the vertical axis is a log scale and the horizontal axis is a linear scale.
Therefore, the distribution of Cg({ob is well approximated by a decreasing exponential
curve. For either Cgsl(,b or Cg, both the axes are plotted in a linear scale, and distribu-
tions are characterized by two peaks. A similar pattern with the presence of two peaks
has also been observed for straightness and closeness indices evaluated locally but on
different scales.

5.2 Correlating street centrality and commercial or service activities

The main hypothesis of this study is that centrality acts as a driving force in the forma-
tion and constitution of urban structure in terms of land uses such as commercial and
service activities. Here the relationship is examined by analyzing the correlations
between the densities of street centrality and retail or service activities in the same
raster framework. As explained earlier, the study involves examining thirty paired
correlations of kernel densities based on the same bandwidth. The methodology shares
some common ground with an earlier study by Thurstain-Goodwin and Unwin (2000)
that combined estimated density values on a cell-by-cell basis in a correlation of the
same factors.

As our focus is on the developed areas along the street network, we first excluded
cells of zero values in either of the coupled raster layers. This reduced the number
of cells for analysis from 2771956 to 15000001800 000. For each pair of variables,
a simple linear correlation coefficient (or Pearson’s r) was computed. Pearson’s r,
ranging from —1 to 1, determines the extent to which values of the two variables are
‘proportional’ to each other. In general, the value of Pearson’s r decreases as the sample
size increases, owing to statistical fluctuations (Taylor, 1982).

The emphasis of this research is on examining how the street network centrality
and retail and service density are related to each other. It is not our objective to
explain, one factor by another, which would require rigorous regression analysis.
Spatial data (including those in this study) often exhibit spatial autocorrelation, in
which values of a variable are systematically related to geographic location (eg similar
or dissimilar values are near each other). In that case spatial regression models such
as the spatial lag model or the spatial error model (Fotheringham et al, 2000,
pages 167 —-169; Wang, 2006, pages 181 —185) ought to be used, and more advanced
techniques such as the maximum likelihood method (Anselin and Bera, 1998) are
needed to calibrate the models. This will be explored in our future work, which may
consider more factors in addition to the centrality measures.

The analysis in Bologna shows that all thirty paired correlations are positive. A very
strong positive association emerges, especially considering the large sample size. Among
the fifteen pairs with the highest r (see table 2), all the r values are higher than 0.5.
In table 2 six of the correlations between the global betweenness centrality (Cg'?(,b) and
retail activities are among the top fifteen; so are five of the correlations between the
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Table 2. Top fifteen Pearson correlations between kernel densities of street centralities and
commercial and service activities in Bologna. KDE denotes kernel density estimations. comm
and serv denote retail commerce and commercial services, respectively.

Rank Correlated variables KDE bandwidth Linear correlation
(m) (Pearson’s r)
centralities activities
1 Caob comm -+ serv 300 0.727
2 Cﬁub comm 300 0.704
3 Cgob comm + serv 200 0.673
4 Caop comm 200 0.653
5 Ciob comm 300 0.641
6 Cao comm + serv 300 0.620
7 Ciob comm + serv 300 0.615
8 Chiob comm + serv 300 0.608
9 Ciob comm + serv 200 0.583
10 Cioo comm + serv 100 0.567
11 Cso comm + serv 300 0.565
12 C;Ob comm 100 0.555
13 Ciiob comm 200 0.547
14 Ciob comm + serv 200 0.546
15 Ciob comm 300 0.533

global closeness centrality (Cgclob) and retail activities. However, the global straightness

centrality (Cgslob) is only present twice in the table. Global betweenness Cgob emerges to
have by far the strongest correlation with retail activities at all scales, with r values
above 0.7. Interestingly, betweenness centrality captures the potential of a place to be
traversed by passenger or freight trips between other places in the system, or ‘through-
traffic’, even if it does not serve as an origin or destination. In other words, a place itself
may not attract people or cargo as a major trip destination, but it may take advantage
of its unique location as merely a pass-through nexus to generate great business oppor-
tunities. Hence a high value of betweenness centrality often implies a high concentration
of commercial or service activities.

Figure 6 plots the densities of retail shops and services versus centrality. Like the
histograms in figure 5, each graph in figure 6 is drawn on the basis of the average
densities of retail and service activities within each range of the street centrality. The
graphs indicate that higher values of centrality generally correspond to higher average
densities of retail and service activities. The pattern is clear for global between-
ness [figure 6(a)] and global closeness [figure 6(c)], particularly for C;Db, which has
an almost linear relationship. Note the inset of figure 6(a) (using a bandwidth
h = 100 m for comparison) showing greater fluctuations. With regard to the global
straightness [figure 6(b)] and the local closeness [figure 6(d)], the curves are flat in the
lower range of centrality values and then climb up a steep slope when the centrality
values are higher. In other words, in terms of global straightness or local closeness,
concentrations of activities are slow in responding to the improving centrality initially,
but get more intense after the centrality passes a certain threshold.

In summary, the results from the correlation analysis in the city of Bologna support
the hypothesis that street network centrality, measured by the MCA model, acts as a
driving force in the formation and constitution of urban structure, as reflected in the
distribution of commercial and service activities at the neighbourhood level.
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Figure 6. Correlations between kernel densities of street centrality and retail commerce
and commercial service activities (comm and serv, respectively) (4 = 100 m for inset and
h = 300 m in all other cases).

6 Conclusions

This paper examines the relationship between street centrality and land-use intensity in
the city of Bologna, northern Italy. Street centrality is calibrated in a multiple centrality
assessment model composed of multiple measures such as closeness, betweenness, and
straightness. In this study land-use intensity is measured in terms of ground floor
commercial and service activities. Kernel density estimation is used to transform
both the centrality measures and the densities of retail and services to one scale unit,
which permits the correlation analysis between them.

Results indicate that retail and service activities in Bologna tend to concentrate in
the areas that enjoy better centralities. The distribution of these activities correlates
highly with the global betweenness of the street network, and also with the global
closeness, but to a slightly lesser extent. This confirms the hypothesis that street
centrality plays a crucial role in shaping the formation of urban structure and land
uses. Betweenness centrality captures the potential of a place to be traversed or to
attract ‘through-traffic’. That is to say, a place itself inside a city may not need to be a
major trip destination but merely a pass-through nexus in order to generate great
business opportunities.

The study also suggests that the multiple centrality assessment model be an effec-
tive tool for mapping street centrality as a fundamental property in a city—that is,
‘location advantage’—and thus can serve as a very useful guide for urban planning
and design. By analyzing the statistical distributions both of densities of centrality and
of activities, it is observed that values of betweenness centrality and the density of
activities follow a power function, which indicates that very few places enjoy the best
location and thus command a high concentration of business in contrast to the vast
majority of urban space. Such a distribution pattern is found in most self-organized
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complex systems in nature, technology, and society, implying that cities may be a
self-organized system following some ‘organic’ order in their evolution over time.
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