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Abstract. We compare the structural properties of  the street networks of  ten different 
European cities using their primal representation. We investigate the properties of  the 
geometry of  the networks and a set of  centrality measures highlighting differences and 
similarities between cases. In particular, we found that cities share structural similarities 
due to their quasiplanarity but that there are also several distinctive geometrical properties. 
A principal component analysis is performed on the distributions of  centralities and their 
respective moments, which is used to find distinctive characteristics by which we can 
classify cities into families. We believe that, beyond the improvement of  the empirical 
knowledge on streets’ network properties, our findings can open new perspectives into the 
scientific relationship between city planning and complex networks, stimulating the debate 
on the effectiveness of  the set of  knowledge that statistical physics can contribute for city 
planning and urban-morphology studies.
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1 Introduction
Defining urban form is certainly an important and difficult issue, especially if one wants 
to supply useful knowledge to urban planners and urban designers or new knowledge for 
city scientists. In this paper we address this question, and we try to improve the empirical-
based knowledge on the structure of a city by studying the urban street networks of ten 
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European cities. The form of cities is the subject of an area of urban studies named urban 
morphology. Urban morphology in its current form emerged between the 1940s and the 
1960s from the work of two scholars as prominent as different: the German-born and then 
British urban geographer Conzen (1960), and the Italian architect and historian Muratori 
(1960). In this area the main subject of investigation is the urban fabric of the city at the 
scale of the neighborhood, street, plot, and building.

A different branch of urban morphology has stemmed from the sciences of complex 
systems building on a long-standing tradition in regional analysis, economic geography, 
and modeling (Anas et al, 1998). Complexity in the built environment is investigated here 
with the same instruments used for other classes of self-organized phenomena in nature, 
technology, and society (Batty, 2005). These works are now flanked by a growing interest in 
complex spatial networks within the community of physicists (Boccaletti et al, 2006).

Spatial networks, and in particular planar graphs, are suited to modeling a number of 
real phenomena (Barthélemy, 2011). Here we are interested in the study of a particular 
class of spatial networks that describe the street patterns of cities. The beginning of these 
studies can be traced back to the classical works on regional transportation networks based 
on graph theory (Garrison and Marble, 1962; Kansky and Danscoine, 1989). The advent of 
complex system science and its paradigm (Albert and Barabasi, 1999; 2002), jointly with 
the increasing availability of spatial and time georeferenced data, has given a new boost to 
these studies, and several important contributions have appeared recently (Barthélemy, 2011; 
Strano et al, 2012).

Masucci et al (2009) studied the structural property of the London street network in its 
dual and primal representation. In Jiang (2007), the authors, by using forty urban networks 
in a dual representation, found a small-world structure and a scale-free property for both 
street length and connectivity degree, and used various centrality indices as indicators of 
the importance of streets. Lämmer et al (2006) developed a comparative analysis of the 
betweenness distribution for twenty cities in Germany, suggesting a relationship with 
vehicular traffic. Others have focused on centralities in primal and dual representations of 
street networks (Crucitti et al, 2006; Hillier, 1999; Hillier and Hanson, 1984; Porta et al, 
2006a; 2006b), and on other structural features, such as the number of cycles of a given 
length (Cardillo et al, 2006).

However, an important and still open question in urban morphology has to do with the 
characterization of classes of cities based on their form. This study is a preliminary step 
towards a comparative analysis aimed at the classification of cities. In this paper we propose 
a classification based on the distribution of street centrality by cross-comparing real cases 
and, therefore, with no use of null models. We limit our study to the characterization of city 
form without exploring its impact on collective behaviors, an area of research which, at the 
scale of entire cities, is now finding new opportunities through the exploitation of massive 
datasets from online geosocial networks and mobile georeferenced systems (Expert et al, 
2011; Ratti et al, 2010).

In our study, we observe first the geometry of the networks following the approach 
recently suggested by Chan et al (2011); we consider the distribution of basic indices of the 
primal street networks such as street angles at intersections and street lengths. Secondly, we 
investigate four different centrality indices computed over the entire urban street network, 
highlighting their distribution and their mutual correlation.

We considered ten European cities: Edinburgh, Leicester, Sheffield, Oxford, Worcester, 
and Lancaster (in the UK), Catania and Bologna (in Italy), Barcelona (in Spain), and Geneva 
(in Switzerland). We show that these cities share some structural geometric properties, which 
are the same as those found in other planar spatial systems such as in leaves (Bohn et al, 
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2002; Couder et al, 2002; Perna et al, 2011), which suggests that planarity in itself is a driver 
across spatial systems in various domains.

However, we also show that cities are different. We witness that some cities, like Catania, 
stand alone in terms of basic geometric properties and, more importantly, that the various 
distributions of centrality are reconcilable to one common pattern (a power law) only if a 
largely minoritarian subset of streets is taken into consideration. These results have to do with 
the extreme heterogeneity of the cities’ visible traits as resulting from the interplay of entirely 
different phenomenon in time, such as historical accidents (including planning), physical 
constraints, or just random events (Batty, 2005). In particular, we show how cases tend to 
cluster in groups after the whole set of centrality-measure distributions are considered in a 
way that suggests major planning interventions and physical geographic constraints are key.

The paper is organized as follows. In section 2 the case-study cities are presented and 
their geometric properties are introduced and analyzed. In section 3 the study of the four 
centrality indices is illustrated along with the clusterization of cases according to their 
combined behavior as a result of the application of a principal component analysis (PCA) 
of the distribution of those four centralities. Finally in section 4 we offer a discussion of the 
results and our conclusions.

2 Basic proprieties of urban networks
We address the analysis of the ten European cities (figure 1). These cities are variously 
located and present remarkably different economic, cultural, and climatic conditions along 
with a great variety of characteristics, such as population and area (table 1). We represent the 
street network of these cities such that intersections are nodes and streets are links between 
nodes, that is, a primal representation (Porta et al, 2006a). We analyse such networks in terms 

Figure 1. Geographical location of the cities studied.
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of their basic properties and several geometric indices such as street length and the angle 
streets form at intersections.

Before getting deeper into the analysis, we introduce some basic concepts of graph 
theory. A graph (or network) is a mathematical object which consists of two sets: N and L. 
The N elements of the former are called nodes, while the E elements of the latter (unordered 
pair of nodes) are called links.

There are many ways to represent a graph, but the most common one is the adjacency 
matrix A, an N × N square matrix whose entry ( , , , )a i j N1ij f=  is equal to 1 if a link 
between nodes i and j exists and 0 otherwise. The degree ki of a node i is the number of links 
incident with it. The average degree /k E N2= , is the average of the degrees over all the 
nodes in the network.

Networks of street patterns belong to a particular class of graphs called planar graphs, that 
is, graphs whose links cross only at nodes. In our case the nodes represent street intersections, 
while the links are the centerlines of the streets and a network made using this convention is 
called a primal network (figure 2). Our networks are also weighted and each link (i, j) carries 
a numerical value wij expressing the intensity of the connection. The natural choice, in our 
case, for the functional form expressing the weight of a link connecting nodes i and j is to put 
wij equal to the length lij of the connecting street.

Our analysis starts by importing the street system into a geographical information system 
(GIS) environment. Data of the street systems have been retrieved from different sources: 
for example, in all UK cases we have used the Ordnance Survey maps, while in Italian 
cases we have used data from the planning offices of the city councils, and in Barcelona we 
worked with a dataset provided by the Agència d’Ecologia Urbana de Barcelona. Given that 
these geographical street networks had been built mainly for the sake of traffic navigation 
or planning, they presented characteristics that do not always fit the purposes of a centrality 
analysis; for example, multilane streets were usually represented with one link per lane rather 
than one link per street. As a result we have prepared our databases by first cleaning the 
networks accurately to remove link redundancies, fix short missing links, and, when needed, 
collapse unconnected links on the same node, while continuously confronting the networks 
with aerial images of the real cities drawn from remote sensing sources such as Google 
Earth. Such procedures were undertaken both manually and through ad hoc tools in a GIS 

Table 1. Basic proprieties of the primal networks.

City Population Area 
(km2)

N E 〈k〉 ρ  
(km−1)

L  
(km)

〈ℓ 〉  
(m)

σℓ  
(m)

f  
(%)

Barcelona 1 615 908 82.0 6 452 11 071 3.43 15.15 1 242 110.7 105.1 0.1
Bologna 380 878 88.6 5 200 7 359 2.84 9.19 814 119.1 158.0 23.0
Catania 293 811 34.0 11 099 14 039 2.52 23.91 813 55.9 57.3 17.0
Edinburgh 477 660 195.6 5 021 13 063 2.43 8.96 1 752 110.0 147.0 24.0
Geneva 191 237 95.0 6 183 8 681 2.80 11.18 1 062 122.4 119.7 0.9
Lancaster 45 952 77.7 5 913 15 567 2.51 9.28 721 96.8 153.6 18.0
Leicester 288 000 122.2 7 186 8 896 2.47 7.23 883 98.5 94.5 18.0
Oxford 149 800 51.1 4 372 11 071 2.32 10.27 525 103.0 133.7 28.0
Sheffield 520 700 187.5 14 583 17 674 2.42 10.58 1 983 111.0 129.8 21.0
Worcester 94 300 45.1 4 685 5 538 2.36 11.75 530 94.8 126.6 21.0
Notes. N and E are the number of nodes and number of edges, respectively, while 〈k〉 is the average 
degree. The density ρ is given by the ratio between the total length (L) and the area. 〈ℓ〉 indicates the 
average length of the edges, while σℓ corresponds to its standard deviation. f indicates the percentage 
of tree-like appendixes.
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environment. For the definition of the boundary of the urban systems, we followed the border 
of the built-up area extending it outwards by roughly 1 km.

Considering the entries in table 1, we can see how the various selected cities compare, 
for example, in terms of size, from small cases like Lancaster to large ones like Barcelona, or 
in terms of street intersection density, from very dense cities like Catania to more sprawling 
ones like Edinburgh. We have selected cities with different levels of geographic constraints, 
from those such as Geneva and Oxford that are traversed or limited by large natural water 
features to those like Catania and Bologna that sit on uninterrupted plains, and cities with 
a different prominence of planning history, from those self-organized or only fragmentarily 
planned like Leicester or Bologna to one like Barcelona whose street layout had been heavily 
determined by one single planning vision (the 1859 Cerdá Plan). We see that the particular 
planning history of Barcelona is reflected in the low values of both the standard deviation 
of the street length and the percentage of dead-end streets to the total number of streets, 
both resulting from the extensive adoption of a rigid homogeneous grid layout. The extreme 
diversity of the selected cases has been pursued in order to make the comparative analysis of 
similarities and differences more profound.

The study of the geometric properties of the networks has focused on the distribution of 
three indices with the aim of finding common patterns: street length, angles formed between 
street intersections, and the relationship between dead-end link length and the area of the 
cycle they belong to. Following the definition given by Chan et al (2011), we consider cycles 
as polygons formed by closed loops of links. We build our approach on previous findings that 
have identified universal geometric patterns under seemingly diverse street networks in cities 
(Barthélemy and Flammini, 2008; Bohn et al, 2002; Couder et al, 2002; Låmmer et al, 2006; 
Masucci et al, 2009; Perna et al, 2011) and extend our exploration to focus on local patterns 
that actually make the uniqueness of each case or clusters of cases.

In a city long and short streets both play an important role. The former allow the connecting 
of distant locations, while the latter act as shortcuts between longer streets reducing the average 
path length in the navigation of the system. Short and long streets have a different historical 

3       1.5        0                    3 km

(a) (b)

Figure 2. Example of street networks, (a) Leicester and (b) Worcester. The streets with lengths that 
are not following a power-law distribution are shown in black, while streets with lengths that follow a 
power-law distribution are shown in grey.
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meaning in the evolution of cities, as street length tends to diminish with increasing density 
of the urban pattern, following a rule in which the more ‘urban’ the area, the shorter the street.

The overall average street length 〈ℓ〉 of selected networks represents a simple and good 
indicator of the diversity of cities, and looking at table 1 we find a considerable variation so 
that even putting aside the special case of Catania with 〈ℓ〉 = 56 m, which is due to the extreme 
density of the historical core, the average street length lies between 94.8 m (Worcester) and 
122.4 m (Geneva).

We observed the distribution of street length in the selected cases. Since we are comparing 
cities of different sizes, we considered the normalized length ℓ, that is, the street length 
divided by the diameter of the network, which is defined as the maximum Euclidean distance 
between any couple of nodes belonging to the network.

In figure 3 we confirm the findings of Barthélemy and Flammini (2008), that the 
relationship between the total length L and the number of nodes N scale as N 1/2. However, we 
notice that our cases are not closely distributed along a straight line, indicating a significant 
variance that can be explained by the different natures of our datasets: we are, in fact, 
comparing a small number of cases; moreover, our cases are large networks representing 
entire cities, which means that we are here handling nonhomogeneous and invariant street 
networks made of parts derived from different historical formations and shapes. It is exactly 
this variability that we want to capture with a closer look at the differences emerging from 
the data.

The distribution of street lengths is the simplest and first indicator that we use for 
examining such differences. Previous findings proposed a power-law distribution with a cut-
off for the longest street segments (Masucci et al, 2009) and a bimodal shape distribution 
with a plato region above 30 m (Chan et al, 2011). We found slightly different results. If we 
look at figure 4(a), we see that a power law emerges in the distribution tail though, of course, 
the accordance between the distribution and the fitting becomes worse with decreasing of the 
street lengths. However, since we want to look at local patterns as well as global patterns, we 
must investigate what happens in the region that is not well fitted by a power law.

In figure 4(b), we plot also the same distribution in a semilog scale. Here it is possible to see 
that most of the distributions exhibit a peak in the region between 8 × 10−4 and 3 × 10−3, which 

2000

1800

1600

1400

1200

To
ta

l l
en

gt
h 

(k
m

)

1000

800

600

400

60 80 100
N 1/2

120 140

Figure 3. Total street length L as a function of N1/2 (N is the number of nodes).

Sheffield

Edinburgh

Leicester

Barcelona

Geneva

Bologna

Catania
Lancaster

Oxford

Worcester



Urban street networks 1077

means that the majority of streets have a normalized length around these values. However 
Catania, Barcelona, and Worcester have different behaviors whose causes might be traced 
back to historical accidents. Catania falls out of these boundaries because of its abundance 
of very short streets in the historical urban center, which are possibly a consequence of the 
complete reconstruction of the city center after the disastrous volcanic eruption of Etna in 
1669. Barcelona presents an anomalous peak clearly related to the Plan Cerdá mentioned 
above, with a massive grid-iron plan covering the central part of the current urban area. 
Worcester exhibits a double peak in the street length distribution, which is a consequence of 
the post XXII planning process that clearly shapes most of the periphery. From this we can 
appreciate the impact of specific historical occurrences that mostly impacted the urban form 
in terms of an interplay between planned and nonplanned urban forms.

This variety of street patterns gets entirely hidden in the conventional representation 
of data through log–log charts and if we look at which part of the street layout falls within 
the region that is correctly fitted by a power-law function (table 2), we see that it actually 
represents a minority of the entire network in all our cases.

In terms of sheer numbers of streets, using the method proposed by Clauset et al (2009) 
we observed that the percentage of streets falling inside the power-law region ranges from 
4% in Barcelona to the 29% in Lancaster as shown in table 2. Of course, streets falling in the 
power-law region are the longest, so they cover a larger share of the system in terms of street 
length; however, the percentage of the total street length belonging to streets falling outside 
the power-law region in most of the cities is up to the 60%, as shown in the last column of 
table 2. We can appreciate visually the geographic consistency and character of the portion 
of the street network in Leicester and Worcester that is outside the power-law region: clearly, 
this portion represents not only the majority of the street network, but also the part that is 
historically more important, the denser and the more central, which is no surprise if we think 
that it is comprised of the shortest streets. However, generalizations and conclusions may be 
improved by further and deeper tests on larger areas. For the time being, on the basis of these 
results, we may argue that cities are composed of streets following two distributions that may 
reflect different dynamics of urban evolution.

Streets are not always straight lines. In order to study the distribution of angles formed 
by streets at intersections we must use an equivalent network in which all the streets are 

Table 2. The total number of streets following a power-law distribution is very low and includes only 
the longer streets in the city. In terms of total street length the percentage of streets not following the 
power-law distribution are always the majority with the exception of Lancaster.

City Threshold  
(m)

% of streets in 
a power-law 
distribution

% of street length 
not in the power-law 
distribution

Barcelona 347 4 86
Bologna 122 28 37
Catania 143 6 77
Edinburgh 194 13 59
Geneva 218 13 63
Lancaster 93 29 32
Leicester 211 9 74
Milano 233 8 71
Oxford 184 13 58
Sheffield 245 8 70
Worcester 166 14 55
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represented by straight lines (ie, substituting straight streets for curved streets) and where 
the link weight is equal to the Euclidean distance between the end nodes. We name this 
a Euclidean network. As for all the generalization models, results should be interpreted 
with caution due to the effect that the approximation may produce on the real structure of 
the network. Such caution suggests a preliminary test. The inset in figure 5 shows small 
divergences between the distribution of street length in the original network and in the 
Euclidean network for the city of Leicester. Such a simple test confirms that the Euclidean 
generalization does not lose relevant information, that is, that streets in cities are not always 
straight but are predominantly straight, confirming the finding of Chan et al (2011). Therefore 
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we are confident that using the distribution of the angles formed by street intersections in 
the Euclidean network is a reliable approximation of the original. The distributions of the 
angles formed by streets at intersections are shown in figure 5. At a glance, we note that all 
the cities share the same behavior, exhibiting a double peak-shaped distribution around the 
characteristic values of 90° and 180°. This finding confirms the analogous results that have 
been found in other forms of spatial planar networks, such as those of leaf venations (Bohn 
et al, 2002; Couder et al, 2002), as a result of tensorial stress fields or simple force models.

The incidence of certain motifs in complex networks is a long-standing object of 
investigation (Milo et al, 2002). Here we want to focus not on the cycle’s shape and quantity, 
but on the relationship between the total length of dead links within a given cycle and its 
area. Even if we are measuring static systems, that is, systems that do not change over time, 
we should remember that a cycle is the result of an evolutionary process that starts with 
short dead-end streets sprouting from the longest edges of the cycles and then extending 
towards the opposite edge until splitting the original cycle in two smaller subcycles. Dead-
end streets can be interpreted as sprouts of new cycles in parcels still subjected to evolution 
or as crystallized fractures that do not undergo further development. Their quantity is given 
by the index f shown in table 1 and it can be thought of as an estimator of the abundance of 
cycles in the intermediate evolutionary stage of their lifetime as suggested by Barthélemy 
and Flammini (2008). Such assumptions are supported by the result shown in figure 6, 
where we report the sum of the length of dead links inside each cycle versus the area of the 
cycle itself for each city. The distribution shows a clear power-law behavior with a common 
exponent close to 0.8. It is worth noting that the power-law behavior is not affected by any 
factor such as the fraction of dead ends f, or the average degree 〈k〉. Similar results have 
appeared in Lämmer et al (2006) and Perna et al (2011). Of course, our findings can be truly 
confirmed only by investigating the evolution of urban streets over time with the support of 
empirical data.
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3 Centralities and city classification
The concept of centrality has been used for many years in network and social science and, 
starting from the seminal work by Wasserman and Faust (1994), there has been a growth 
of the literature regarding centrality in social networks as well as other kinds of networks. 
Depending on the definition, centrality can be understood as meaning proximity between 
nodes, accessibility from other nodes, or being in a strategic position for connecting a couple 
of nodes. It is clear that from different definitions of centrality, a node actor can be placed 
at different centrality ranks and that the same node can have a high value for one form 
of centrality while yielding weak values for others. Therefore, for different cities, we can 
reasonably expect slightly different distributions of centralities. Moreover, we can identify 
how centralities are mutually dependent and correlated. What makes centralities particularly 
suited for geographical studies is that they can be visualized and mapped. We are interested 
in understanding if and how these ranges of correlations and fluctuations can help to classify 
cities that share the main network morphology. For example, a grid-like network can be 
different from a radial one, but only looking at the statistical distribution of centralities might 
not be enough for a proper classification. This problem has been already analysed by Porta 
et al (2006a; 2006b) where the statistical distributions of closeness, betweenness, straightness, 
and information centralities have been analysed for a sample of twenty one square mile city 
parcels. Crucitti et al (2006) found significant differences between cities and through a cluster 
analysis they proposed a classification of different urban patterns. The approach proved to 
be effective in capturing essential features of urban form as emerging in limited samples 
selected for their inner morphological consistency. However, dealing with entire cities poses 
the problem of the classification of internally complex objects predominantly composed of 
different parts, each of which may exhibit different properties. So, the question about the 
validity of such a procedure for a whole city still needs a response. In order to validate if 
centrality indices can be used in the classification of entire cities, we propose a clustering 
method based on a PCA made on the distribution of centralities and on their moments. Before 
discussing this part of the research, we must introduce briefly the adopted centrality indices.
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Betweenness centrality, C B, is based on the idea that a node is more central when it is 
traversed by a large number of the shortest paths connecting all pairs of nodes in the network. 
More precisely, the betweenness of a node i is defined in Wasserman and Faust (1994) and 
Freeman (1977; 1979) as:

( )( )

( )
C

N N n
n i

1 2
1

,
,

B
i

jk

jk

j k N
i k j k

=
- -

! !
!

/  , (1)

where njk is the number of shortest paths connecting j and k, while njk(i) is the number of 
shortest paths connecting j and k and passing through i.

Straightness centrality, C S, originates from the idea that the efficiency in the 
communication between two nodes i and j is equal to the inverse of the shortest path length, 
or geodesic, dij (Latora and Marchioni, 2001). In the case of a spatial network embedded into 
a Euclidean space, the straightness centrality of node i is defined as:

C
N d

d

1
1

,

S
Eucl

i
ij

ij

j N i i

=
-

!!

/  , (2)

where d Eucl is the Euclidean distance between nodes i and j along a straight line. This 
measurement captures the extent to which the connecting route between nodes i and j, such 
as between each street junction, deviates from a virtual straight route.

The closeness centrality, C C, of a node i is based on the concept of minimum distance, 
in the topological sense, that is, the minimum number of edges traversed to get from i to j 
(Boccaletti et al, 2006) and is defined in Scott (2000) and Sabidussi (1966) as:

C
L d

N1 1C
i

i ij

j G

= =
-

!

/  , (3)

where Li is the average distance from i to all the other nodes. Closeness centrality is a classical 
centrality index that has been widely used in urban geography and econometrics as well as 
in regional planning, where it gives an idea of the cost that spatial distance loads on many 
different kinds of relationships that take place between places, people, activities, and markets.

The accessibility, C A, is a measure recently introduced by Travençolo and da F Costa 
(2008a; 2008b). It has been used for studying the property of very different spatial networks. 
In the case of urban networks, it has been used to investigate the relationship between 
subway systems and road systems (da F Costa et al, 2011). In addition, the accessibility 
has been found to be closely related to the borders of networks (Travençolo et al, 2009), in 
the sense that nodes with low accessibility tend to belong to these borders. The CA of node 
i measures the ratio of neighboring nodes that are effectively reached by an agent randomly 
navigating the network against the actual number of nodes that belong to the neighborhood. 
More precisely, CA takes into account the number of nodes effectively accessed by each node 
of the network, as well as the probabilities of such accesses. First, we evaluate the transition 
probability Pi,j (h) which describes the probability of an agent leaving from node i to reach 
node j after h steps along a given type of walk. At each step, the agent located at node q, 
chooses a random neighbor of q and jumps to it. These rules define a random walk over the 
network. When the transition probabilities are very heterogeneous, we have low values of 
accessibility, meaning that the random walks are biased towards a certain number of nodes, 
which is less than the number of nodes that can be reached after h steps. On the other hand, 
when the transition probabilities are homogeneous, all nodes that can be reached after h steps 
are accessed, on average, the same number of times. This case corresponds to the highest 
values of accessibility. The heterogeneity of the transition probabilities is quantified in terms 
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of the classical concept of entropy, so that the mathematical definition of accessibility of a 
node i with respect to the number of steps h is given as

( ) ( ) ( )exp lnC h P h P h, ,
A
i i j i j

j

N

1

= -
=

= G/  . (4)

Also, we have considered the transition probability for unitary step (h = 1), as:

( )P P

w

w
1, ,

,

,
i j i j

i j

j

N

i j

1

= =

=

/
 , (5)

where w ,i j  is the weight of the edge (i, j ). In order to take the geography into account, we 
considered /w d1,

Eucl
i j ij= . For disconnected nodes, we assume dEucl

ij 3=  such that w 0,i j = .
In order to investigate if the distribution of centralities can describe the main geographical 

differences within cities, we use the PCA approach. This well-established method of 
multivariate statistics implements a projection of the distribution of objects (in our case, 
cities) from a higher into a lower dimensional space such that the maximum dispersion of the 
data is observed at the first new axis (or principal variable), and so forth. This projection is 
optimal in the sense of fully decorrelating the original data, therefore removing all correlations 
between the original measurements describing the objects. So, since the data dispersion 
is better described by the first principal axes, the remaining axes can be discarded. PCA is 
therefore particularly relevant to the present studies because: (i) it decorrelates the original 
measurements; (ii) it provides a projection of the data that maximizes their dispersion (ie, 
the differences between the cities); and (iii) it allows the visualization of the distribution of 
objects (when projected onto 2D or 3D spaces).

The PCA consists of obtaining the covariance matrix of the original data and then 
extracting its eigenvalues and respective eigenvectors. The eigenvalues can be shown to 
correspond to the variances along each new axis, and then each respective eigenvector 
component provides the coefficient of the linear combination of the original measurements 
used to project the original data onto the respective axis. Therefore, the effectiveness of 
PCA in projecting the data can be inferred by inspecting the eigenvalues in descending 
order. For instance, if the two largest eigenvalues account for 75% of the overall variance, it 
can be understood that these two axes are describing the original distribution of points in an 
effective way, and that the other axes can be overlooked without losing much information.

First, we evaluate the histogram of each centrality measurement considering 20 bins. 
In this way, each dimension corresponds to the relative frequency of centrality values in 
a small range. The histogram of each one of the four centralities were merged in order to 
create an eighty-dimension feature vector for each city. For instance, figure 7(a) shows 
the feature vector obtained for the city of Leicester. In the second approach, the feature 
vectors were created by considering the 20th first moments of the centrality distributions 
merged together, also generating an eighty-dimension vector. It is important to note that, 
both first and second approaches provided similar results. Finally, the dimension of the 
feature vectors were reduced from eighty to two, in which each original dimension has a 
contribution according the values shown in figure 7(b), which shows the explanation of each 
dimension. By plotting the first two dimensions, it is possible to account for almost 50% of 
the dispersion, while a clear differentiation between cities can be seen in figure 8. Since it is 
impossible to visualize the high-dimensional data, in order to try to recognize the clusters we 
used an agglomerative clustering method, the so-called complete linkage method, to perform 
this task. In this method, the Euclidean distance between two clusters is given by the value of 
the shortest distance between any object belonging to these clusters. The final result is shown 
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in figure 9 as a dendrogram, where the colors (black and grey) correspond to the two clusters 
identified by using a threshold parameter 0.7 of the maximum distance between two cities.

This figure clearly shows the emergence of a cluster of cities (grey) and a group of cities 
that are very different from each other but belong to a single family (black), so we may interpret 
this agglomeration as the existence of two main different classes or typologies of cities. 
In this classification a clear group composed of Catania, Bologna, Sheffield, Edinburgh, and 
Leicester is separated from Geneva, Lancaster, Oxford, Worcester, and Barcelona. Though 
the reasons behind this separation may be manifold and needs further experimental tests, 
we notice that by comparing the plans of those cities and the topography of their terrain it is 
possible to conclude that physical constraints may be a key factor in classifying cities. We 
have found that cities traversed by rivers or bordered by a lake were separated from those 
where the growth has never been bounded or divided by physical constraints. The exception 
of Barcelona, a city with a major planning event (the Plan Cerdà), confirms this hypothesis 
placing the great urban planning operations in the list of the geographical constraints.
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4 Discussion
In this research we analyse the street network of ten European cities represented in a primal 
way, where intersections are translated into the nodes of a network and the connecting streets 
into the links. We study first the geometric properties of the networks and then the way 
centrality is distributed over them according to four different definitions of centrality. We 
show that the selected cities share several universal geometric patterns, such as the average 
street length (which is limited within a remarkably narrow range of values), the distribution 
of angles between streets at intersections, and the distribution of the total length of dead-
end streets as a function of the area of the cycle they belong to. In addition, we confirm 
that the distribution of street lengths follows universal power-law behavior in the long 
tail of the dataset, that is, for high values of street length. However, we highlight that the 
conventional way to represent the distribution of street lengths in search of the power-law 
behavior leaves out of the picture the vast majority of the data, that is, the number of streets 
whose length distribution cannot be accurately fitted by a power-law function is of the order 
of 90% of the whole dataset. We therefore investigated the actual behavior of the street-
length distribution in a semilog scale finding the emergence of remarkably different 
behaviors that seemingly reflect the diversity of local history and conditions. Finally, we 
found that the distribution of the four centrality indices over the street networks allows us to 
characterize clearly two different clusters of cities that appear to be predominantly informed 
by major topographic and geographic local features such as the presence of rivers or lakes. 
We also found that planning events of extreme magnitude such as the occurrence of the Plan 
Cerdà in Barcelona may account for the uniqueness of this city as measured through the 
distribution of street centrality.

We show how the analysis of simple geometric properties of the street network, as well 
as a more complex evaluation of the street centrality, can highlight differences between cities 
and how these differences can be used for classifying cities in categories. It is clear that 
global geometric characteristics of the street network exhibit ‘universal’ behaviors but it 
is reasonable to argue that, as these behaviors also emerge in a vast range of transportation 
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networks in nature and technology that, like the street networks, are mainly planar, the 
universality of those features may be related to the planarity of the systems rather than a 
particular ‘nature’ of cities as such.

Regarding the analysis of the morphology of cities, we believe our study highlights 
that if the universal rules governing the evolution of planar hierarchical networks are 
not discriminated, the extreme differences of their inner urban structure may be easily 
underestimated and, from a qualitative point of view, it may leave local patterns out of the 
picture. We focused on this discrimination process, showing how to operate at a global level 
in order to highlight local patterns where the extreme diversity of our cities emerges and 
should be accounted for, especially when we move on to the problem of classification, that 
is, the problem of finding a taxonomy for urban types.

Acknowledgments. The authors thank Shibu Raman, Tim Jones, Mike Jenks, and Colin Pooley for 
providing some of the data. Emanuele Strano is grateful to Marc Barthélemy, Salvatore Scellato, and 
Andrea Perna for their suggestions and help and to the Faculty of Engineering at the University of 
Strathclyde for financial support. Luciano Da Fontoura Costa is grateful to FAPESP (05/00587-5) and 
CNPq (301303/06-1 and 573583/2008-0) and Matheus Viana to FAPESP (2010/16310-0) for financial 
support.

References
Albert R, Barabási A-L, 1999, “Emergence of scaling in random networks” Science 286 509–512
Albert R, Barabási A-L, 2002, “Statistical mechanics of complex networks” Review of Modern 

Physics 74 47–97
Anas A, Arnott R, Small K A, 1998, “Urban spatial structure” Journal of Economic Literature  

36 1426–1464
Barthélemy M, 2011, “Spatial networks” Physics Reports 499 1–101
Barthélemy M, Flammini A, 2008, “Modeling urban street patterns” Physical Review Letters 100 

138702
Batty M, 2005 Cities and Complexity. Understanding Cities with Cellular Automata, Agent-based 

Models, and Fractals (MIT Press, Cambridge, MA)
Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D-U, 2006, “Complex networks: structure and 

dynamics” Physics Reports 424 175–308
Bohn S, Andreotti B, Douady S, Munzinger J, Couder Y, 2002, “A constitutive property of the local 

organization of leaf venation networks” Physical Review E 65 061914
Cardillo A, Scellato S, Latora V, Porta S, 2006, “Structural properties of planar graphs of urban street 

patterns” Physical Review E 73 066107
Chan S H Y, Donner R V, Lämmer S, 2011, “Urban road networks - spatial networks with universal 

geometric features?” European Physical Journal B 84 563–578
Clauset A, Shalizi C, Newman M E J, 2009, “Power-law distributions in empirical data” SIAM 

Review 51 661–703
Couder Y, Pauchard L, Allain C, Adda-Bedia M, Douady S, 2002, “The leaf venation as formed in a 

tensorial field” European Physical Journal B 28 135–138
Crucitti P, Latora V, Porta S, 2006, “Centrality measures in spatial networks of urban streets” 

Physical Review E 73 036125
da F Costa L, Rodrigues F A, Travieso G, Villas Boas P R, 2007, “Characterization of complex 

networks: a survey of measurements” Advances In Physics 56 167–242
da F Costa L, Travençolo B A N, Viana M P, Strano E, 2011, “On the efficiency of transportation 

systems in large cities” Europhysics Letters 91(1) 18003
Expert P, Evans T S, Blondel V D, Lambiotte R, 2011, “Uncovering space-independent communities 

in spatial networks” Proceedings of the National Academy of Sciences 108 7663–7668
Freeman C L, 1977, “A set of measures of centrality based on betweenness” Sociometry 40 35–41
Freeman C L, 1979, “Centrality in social networks conceptual clarification” Social Networks 1 

215–239
Garrison W L, Marble D F, 1962, “The structure of transportation networks”, TR, Northwest 

University, Evanston, IL



1086  E Strano, M Viana, L da Fontoura Costa, A Cardillo, S Porta, V Latora

Hillier B, 1999 Space is the Machine: A Configurational Theory of Architecture (Cambridge 
University Press, Cambridge)

Hillier B, Hanson J, 1984 The Social Logic of Space (Cambridge University Press, Cambridge)
Jiang B, 2007, “A topological pattern of urban street networks: universality and peculiarity” Physica 

A Statistical Mechanics and its Applications 384 647–655
Kansky K, Danscoine P, 1989, “Measures of network structure” Flux 5 89–121
Lämmer S, Gehlsen B, Helbing D, 2006, “Scaling laws in the spatial structure of urban road 

networks” Physica A Statistical Mechanics and its Applications 363 89–95
Latora V, Marchiori M, 2001, “Efficient behavior of small-world networks” Physical Review Letters 

87(19) 198701
Masucci A P, Smith D, Crooks A, Batty M, 2009, “Random planar graphs and the London street 

network” European Physical Journal B 71 259–271
Milo R, Shen-Orr S, Itzkovitz S, Kashan N, Chklovskii D, Alon U, 2002, “Network motifs: simple 

building blocks of complex networks” Science 298 824–827
Perna A, Kuntz P, Douady S, 2011, “Characterization of spatial networklike patterns from junction 

geometry” Physical Review E 83 066106
Porta S, Crucitti P, Latora V, 2006a, “The network analysis of urban streets: a primal approach” 

Environment and Planning B: Planning and Design 33 705–725
Porta S, Crucitti P, Latora V, 2006b, “The network analysis of urban streets: a dual approach” 

Physica A Statistical Mechanics and its Applications 369 853–866
Ratti C, Sobolevsky S, Calabrese F, Andris C, Reades J, Martino M, Claxton R, Strogatz S H, 2010, 

“Redrawing the map of Great Britain from a network of human interactions” PLoS ONE 5 
e14248

Sabidussi G, 1966, “The centrality index of a graph” Psychometrika 31 581–603
Scott J, 2000 Social Network Analysis: A Handbook 2nd edition (Sage, London)
Strano E, Nicosia V, Latora V, Porta S, Barthélemy M, 2012, “Elementary processes governing the 

evolution of road networks” Scientific Reports 2 296
Travençolo B A N, da F Costa L, 2008a, “Accessibility in complex networks” Physics Letters A 373 

89–95
Travençolo B A N, da F Costa L, 2008b, “Hierarchical spatial organization of geographical 

networks” Journal of Physics A: Mathematical and Theoretical 41 224004
Travençolo B A N, Viana M P, da F. Costa L, 2009, “Border detection in complex networks” New 

Journal of Physics 11 063019
Wasserman S, Faust K, 1994 Social Network Analysis (Cambridge University Press, Cambridge)


