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Motivation
The success of a vaccination campaign relies – among the many things – on the voluntary decision of
individuals to take the vaccine. So, an individual who decides to get immunized is performing an act of
cooperation towards the whole population because his/her decision implies a reduction in the probability of
an epidemic outbreak. Here, we analyze the evolution of voluntary vaccination in networked populations
by entangling the spreading dynamics of an influenza-like disease (encoded in a Susceptible-Exposed-
Infected-Recovered (SEIR) model), with an evolutionary framework taking place at the end of each
influenza season so that individuals take or not the vaccine upon their previous experience. To this aim,
one may consider game theory to formulate a social dilemma in terms of the benefits associated to each of
the behaviors: vaccination or not. The bi-dynamical process is run on a population of agents displaced on
the nodes of a scale-free and homogeneous network. Our framework thus put in competition two well-
known dynamical properties of scale-free networks: the fast propagation of diseases and the promotion
of cooperative behaviors.

Model

1. Each of the agents is set with a given strategy s and an health state x. Then, a SEIR propagation is
performed until no Infected subjects are present.

2. Assignation to each of the N individuals a payoff πi (i = 1, . . . ,N) that depends on their experience
accumulated during the last SEIR propagation. Afterwards, agents evolve their strategies based on
their previous experience.

λ −→ Sane to Exposed prob. π −→ payoff of agent
γ −→ vaccine quality ∈ [0, 1] c −→ vaccine cost ∈ [0, 1]
µ −→ Exposed to Infected prob. TI −→ time units in infected state
µ′ −→ Infected to Recovered prob.

Epidemic Spreading: The transition prob-
abilities of an agent i, Pi, between the Susceptible
and Exposed state in the Non-Vaccinated and Vac-
cinated cases are given by:

Pi
S→E = 1 − (1 − λ)

∑N
j=1 Aijxj , (1)

Pi
S→E = 1 − (1 − γ · λ)

∑N
j=1 Aijxj . (2)

Vaccination Dilemma: The payoff
scheme displayed above put the agents under a
Vaccination Dilemma. To update their strategies,
agents use the so-called Fermi Rule which mimics
a not fully rational behavior:

Psj→si =
1

1 + exp
[
−β(πj − πi)

] , (3)

Network Topologies: We will consider two of the most paradigmatic network models: Erdős-
Rényi (ER) graphs and Barabási-Albert scale-free (SF) networks. In both cases we fix the size and the
average degree.

Macroscopic Behavior in SF networks

The macroscopic behavior of the system is well described by the average fraction of Recovered (top)
〈R〉, and Vaccinated (bottom), 〈NV〉, individuals. Here, we display those quantities as a function of the
infection probability λ and the vaccine quality γ for SF networks.

Microscopic Behavior – Perfect vaccine (γ = 0)

The microscopic behavior of the system can be illustrated through the epidemic R(λ) (top) and vaccination
NV(λ) (bottom).

Microscopic Behavior – Imperfect vaccine (γ , 0)

Epidemic R(λ) (top) and Vaccination NV(λ) (bottom) diagrams for ER and SF networks when the vaccine
is not perfect (γ = 0.12).

Conclusions
Perfect vaccine:

Scale-free networks enhance both the vaccination behavior and the effective immunization of the
population as compared with random graphs with homogeneous connectivity patterns.

Imperfect vaccine:
For scale-free networks and low vaccine costs, there is a threshold value for the vaccine imperfection
so that, for values lower than this threshold, vaccination behavior spans across the population and it is
possible to suppress the disease for all the infection probabilities. Instead, when vaccine imperfection
becomes large, agents are less prone to take it and the disease takes advantage of this risky behavior to
spread more efficiently across the population.
When imperfection appears, the better performance of scale-free network is broken and there is a
crossover effect so that the number of infected (vaccinated) individuals increases (decreases) with
respect to homogeneous networks when the probability of infection is large enough.
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