Beyond simple complex-networks: coevolution, multiplexity, and time-varying interactions

Alessio Vincenzo Cardillo

Department of Condensed Matter Physics – University of Zaragoza &

Institute for Biocomputation and Physics of Complex Systems (BIFI), Zaragoza, Spain

http://bifi.es/~cardillo/

Slide 2/11 - A. Cardillo - 04/07/14

Slide 2/11 - A. Cardillo - 04/07/14

Section 1

....

•

Success story

Spreading of infections

BRAGE YOURSELF

INFLUENZA IS COMING memegenerator.net

Spreading of infections

Compartmental models

....

•••

Spreading of infections

- Tizzoni et al. Real-time numerical forecast of global epidemic spreading: case study of 2009 AH1N1pdm. BMC Medicine, 10, 165 (2012).
- http://www.gleamviz.org/

• Pastor-Satorras R, & Vespignani A. *Epidemic Spreading in Scale-Free Networks*. Phys. Rev. Lett., **86**, 3200 (2001).

.....

Real cases map

(2001).

• Pastor-Satorras R, & Vespignani A. Phys. Rev. E, 63, 066117

Simulated cases map

•••

👩 🚹 • Tizzoni et al. Real-time numerical forecast of global epidemic spreading: case study of 2009 AH1N1pdm. BMC

Medicine, 10, 165 (2012).

Section 2

....

•••

Methods

• Kivelä M, Arenas A, Barthelemy M, Gleeson J P, Moreno Y, & Porter M A. *Multilayer Networks*. arXiv:1309.7233 (2013).

Boccaletti S, Bianconi G, Criado R, del Genio C I, Gómez-Gardeñes J, Romance M, Sendiña-Nadal I, Wang Z, &
 Zanin Z. The structure and dynamics of multilayer networks arXiv:1407.0742 (2014).

Multiplex networks

• https://github.com/manlius/muxViz

Slide 5/11 - A. Cardillo - 04/07/14

• Buldyrev S V, Parshani R, Paul G, Stanley H E, & Havlin S. *Catastrophic cascade of failures in interdependent networks*. Nature, **464**, 1025 (2010).

Slide 6/11 - A. Cardillo - 04/07/14

Section 3

....

•••

Results

•

arXiv.org > physics > arXiv:1302.0558

Physics > Physics and Society

Evolutionary dynamics of time-resolved social interactions

Alessio Cardillo, Giovanni Petri, Vincenzo Nicosia, Roberta Sinatra, Jesús Gómez-Gardeñes, Vito Latora

•

A brief introduction on evolutionary game theory

 Agents states are equal to strategies of a game;

A brief introduction on evolutionary game theory

• Consider the following payoff matrix: C D $C \begin{pmatrix} 1 & 0 \\ b & 0 \end{pmatrix}$ with b > 1;

A brief introduction on evolutionary game theory

• Consider the following payoff matrix: C D $C \begin{pmatrix} 1 & 0 \\ b & 0 \end{pmatrix}$ with b > 1;

A brief introduction on evolutionary game theory

• Consider the following payoff matrix: C D $C \begin{pmatrix} 1 & 0 \\ b & 0 \end{pmatrix}$ with b > 1;

A brief introduction on evolutionary game theory

 Agents update their strategy;

A brief introduction on evolutionary game theory

•••

•••

The model

- Four different games;
- Two different datasets;

• N. Eagle, and A. Pentland, "Reality mining: sensing complex social systems." Personal and Ubiquitous Computing

10, 255–268 (2006).

• J. Scott et al., "CRAWDAD Trace", INFOCOM, Barcelona (2006).

The model

- Four different games;
- Two different datasets;
- Agents interact through the structure of the time-varying network aggregated over a time window Δt;

The model

- Four different games;
- Two different datasets;
- Agents interact through the structure of the time-varying network aggregated over a time window Δt;
- Agents play the game and update their strategies.

••••

SCIENTIFIC REP<mark>ORTS</mark>	Ŏ.			
Home Search For Authors For Referees About Scientific Reports				
Search > 2013 > February > Article				
SCIENTIFIC REPORTS ARTICLE OPEN	< 🛛			
Emergence of network features from multiplexity				
Alessio Cardillo, Jesús Gómez-Gardeñes, Massimiliano Zanin, Miguel Ro Papo, Francisco del Pozo & Stefano Boccaletti	mance, David			
Affiliations Contributions Corresponding author				
Scientific Reports 3, Article number: 1344 doi:10.1038/srep01344 Received 10 December 2012 Accepted 14 February 2013 Published 27 Fe	ebruary 2013			

•••

Interdependent processes

Interdependent processes

PHYSICAL REVIEW E

statistical, nonlinear, and soft matter physics

Highlights Recent Accepted About f

Evolutionary vaccination dilemma in complex networks

....

•••

Phys. Rev. E 88, 032803 - Published 5 September 2013

Alessio Cardillo, Catalina Reyes-Suárez, Fernando Naranjo, and Jesús Gómez-Gardeñes

Interdependent processes

real case $\gamma \neq 0$

c = 1.0

•••

PHYSICAL REVIEW E

statistical, nonlinear, and soft matter physics

Highlights Recent Accepted About fl

Velocity-enhanced cooperation of moving agents playing public goods games

•••••

•••

Phys. Rev. E 85, 067101 - Published 18 June 2012

Alessio Cardillo, Sandro Meioni, Jesús Gómez-Gardeñes, and Yamir Moreno

⊃the	er works			E	
	EPJ ST			2012 Impact fa	ctor 1.796
:	Special Topics				
		Direct access to:	10 most recent	Browse issues	Online first
Eur. http Reg Mc and	Phys. J. Special Topics 215, 23-33 (2013) ://dx.doi.org/10.1140/epist/e2013-01712-8 ular Article odeling the multi-layer nature of d passengers re-scheduling u	of the Europe Inder random	an Air Transp failures	ort Network:	Resilience
Ales	ssio Cardillo ^{1,2a} , Massimiliano Zanin ^{3,4,5} cía del Amo ^{3,6e} and Stefano Boccaletti ^{3f}	^b , Jesús Gómez-Ga	rdeñes ^{1,2c} , Miguel	l Romance ^{3,6d} , Ale	ejandro J.

PHYSICAL REVIEW A

atomic, molecular, and optical physics

Highlights Recent Accepted Authors Referees Search About

.....

•

Information sharing in quantum complex networks Phys. Rev. A **87**, 052312 – Published 15 May 2013

Alessio Cardillo, Fernando Galve, David Zueco, and Jesús Gómez-Gardeñes

Search Current issue Forthcoming All volumes EPB homepage EP homepage Pion homepage

2013 volume 40(6) pages 1071 - 1086

Cite as:

Strano E, Viana M, da Fontoura Costa L, Cardillo A, Porta S, Latora V, 2013, "Urban street networks, a comparative analysis of ten E 1071 – 1086 Deveload childrin data in BIS format

....

•

Urban street networks, a comparative analysis of ten European cities

Emanuele Strano, Matheus Viana, Luciano da Fontoura Costa, Alessio Cardillo, Sergio Porta, Vito Latora

Section 4

....

•••

Conclusions

Summing up ...

.....

•••

Part II

....

Appendix

Cooperation diagram

We measure the cooperation level as:

$$\langle C(T,S)_{\Delta t}\rangle = \frac{1}{Q}\sum_{i=1}^{Q}\frac{N_c^i}{N},$$

....

•

The model

 Agents are scattered randomly on a surface;

The model

- Agents are scattered randomly on a surface;
- Agents interact through proximity with those agents within a radius *R*;

The model

- Agents are scattered randomly on a surface;
- Agents interact through proximity with those agents within a radius *R*;
- Agents play a public goods game

$$r \, n_{
m coop} \, c \,
ightarrow \left\{ egin{array}{c} rac{r \, n_{
m coop} \, c}{N} - c \ rac{r \, n_{
m coop} \, c}{N} \end{array}
ight.$$

The model

- Agents are scattered randomly on a surface;
- Agents interact through proximity with those agents within a radius *R*;
- Agents play a public goods game

$$r n_{\text{coop}} c \rightarrow \begin{cases} \frac{r n_{\text{coop}} c}{N} - c \\ \frac{r n_{\text{coop}} c}{N} \end{cases}$$
Agents move at random.

Slide 14/11 — A. Cardillo — 04/07/14

• •

Synchronization

Gómez-Gardeñes J, Gómez S, Arenas A, & Moreno Y.
 Explosive Synchronization Transitions in Scale-Free Networks. Phys. Rev. Lett., 106, 128701 (2011).

Arenas A, Díaz-Guilera A, Kurths J, Moreno Y, & Zhou
C. Synchronization in complex networks. Phys. Rep., 469, 93 (2008).

•••

....

 Gómez-Gardeñes J, Moreno Y, & Arenas A. Paths to Synchronization on Complex Networks. Phys. Rev. Lett., 98, 034101 (2007).

Kuramoto Model

Fundamental relations

$$\frac{d\theta_i}{dt} = \omega_i + \frac{\lambda}{N} \sum_{j=1}^N \sin(\theta_j - \theta_i), \qquad i = 1, \dots, N \quad (1)$$

$$r e^{i\psi} = \frac{1}{N} \sum_{j=1}^N e^{i\theta_j}. \qquad i = 1, \dots, N \quad (2)$$

• •

•••

Remote synchronization

Activity driven model

The model

Consider *N* nodes and assign to each node *i* an **activity rate** $a_i = \eta x_i$, defined as the probability per unit time to create new contacts or interactions with other individuals. Then, a simple generative process is built, according to the following rules:

• At each discrete time step *t* the network *G_t* starts with *N* disconnected vertices;

Perra N, et al. . "Activity driven modeling of time varying networks", Scientific Reports 2, 469 (2012).

Activity driven model

The model

Consider *N* nodes and assign to each node *i* an **activity rate** $a_i = \eta x_i$, defined as the probability per unit time to create new contacts or interactions with other individuals. Then, a simple generative process is built, according to the following rules:

- At each discrete time step *t* the network *G_t* starts with *N* disconnected vertices;
- With probability a_i∆t each vertex i becomes active and generates m links that are connected to m other randomly selected vertices. Non-active nodes can still receive connections from other active vertices;

• Perra N, et al. . "Activity driven modeling of time varying networks", Scientific Reports 2, 469 (2012).

Activity driven model

The model

Consider *N* nodes and assign to each node *i* an **activity rate** $a_i = \eta x_i$, defined as the probability per unit time to create new contacts or interactions with other individuals. Then, a simple generative process is built, according to the following rules:

- At each discrete time step *t* the network *G_t* starts with *N* disconnected vertices;
- With probability a_i∆t each vertex i becomes active and generates m links that are connected to m other randomly selected vertices. Non-active nodes can still receive connections from other active vertices;
- At the next time step *t* + Δ*t*, all the edges in the network *G_t* are deleted. From this definition it follows that all interactions have a constant duration *t_i* = Δ*t*.

Perra N, et al. . "Activity driven modeling of time varying networks", Scientific Reports 2, 469 (2012).

•

• Gómez S, Díaz-Guilera A, Gómez-Gardeñes J, Pérez-Vicente C J, Moreno Y, & Arenas A. Diffusion Dynamics on

Multiplex Networks. Phys. Rev. Lett. 110, 028701 (2013).