Lesson 1: First steps with Python

Alessio Cardillo

Department of computer science and mathematics (DXIM),
Universitat Rovira i Virgili, Tarragona, Spain

Python Days
Dept. of physics and astronomy — University of Catania, Catania, ltaly

i

UNIVERSITAT ROVIRA i VIRGILI

Foreword

Who is Alessio Cardillo?

e MSc in physics at UniCT in
2010.

1/27

Who is Alessio Cardillo?

MSc in physics at UniCT in
2010.

PhD in physics at UniZar in

m’ 2014.

UNIVERSITAT ROVIRA i VIRGILI

Vé University of %‘y:
B BRISTOL

More than 6 year of
postdoctoral experience.

b Bloc
WAt de Sistemas Complejos
Universidad Zaragoza

7
4

Catania
@,

1/27

Who is Alessio Cardillo?

MSc in physics at UniCT in
2010.
PhD in physics at UniZar in
2014.

More than 6 year of
postdoctoral experience.

Working on applications of
statistical physics &
nonlinear dynamics with a
strong focus on numerical
computation and data
analysis.

1/27

Who is Alessio Cardillo?

e MSc in physics at UniCT in
2010.

e PhD in physics at UniZar in
2014.

e More than 6 year of

CINECA

Barcelona
Supercompulmg «
CEnter
Centro Nacional de Supercomputacicr

== %

postdoctoral experience.

e Working on applications of
statistical physics &
nonlinear dynamics with a
strong focus on numerical
computation and data
analysis.

e Fortran 77 — C — Python
1/27

Outline of the course/lesson

What this course is is not

e An introduction (almost) from e A COMPLETE (and deep)
scratch to Python. course on the Python language.

e A course oriented to people e A tailored solution to single
interested in scientific user's problems.

computing and quantitative e A denigratory comparison

data analysis. between Python and other

e A primer on some mainstream languages (e.g., C).

applications (visualization and
data analysis).

e The (personal) view of a
physicist on the topic.

2/27

Outline of the course/lesson

Course
1. Introduction to the basics of the Python language.

Lesson 1
e History & philosophy of Python
e Basics of Python

e (short) Hands-on session

2/27

Outline of the course/lesson

Course
1. Introduction to the basics of the Python language.

2. More “basics” of Python & basics of NumPy.

2/27

Outline of the course/lesson

Course
1. Introduction to the basics of the Python language.

2. More “basics” of Python & basics of NumPy.
3. IPython notebook & Visualization of data (Matplotlib).

2/27

Outline of the course/lesson

Course
1. Introduction to the basics of the Python language.

2. More “basics” of Python & basics of NumPy.
3. IPython notebook & Visualization of data (Matplotlib).
4. Data analysis (Pandas).

2/27

History & Philosophy of Python

Brief history & Zen of Python

e Developed in Amsterdam by a
computer scientist named
Guido van Rossum

3/27

Brief history & Zen of Python

e “Qver six years ago, in December
1989, | was looking for a "hobby"
programming project that would keep
me occupied during the week around
Christmas. [...] | decided to write an
interpreter for the new scripting
language | had been thinking about
lately: a descendant of ABC that
would appeal to Unix/C hackers. |
chose Python as a working title for the

project, being in a slightly irreverent
mood (and a big fan of Monty

Python’s Flying Circus).”

3/27

Brief history & Zen of Python

e Up to 2018, van Rossum had the title
of “Benevolent Dictator For Life’ of
Python

3/27

Brief history & Zen of Python

e Last release of Python2 is the 2.7.x P th T
(EOL Jan. 2020). Latest release of pg On

Python3 is 3.9.x

3/27

Brief history & Zen of Python

Zen of Python
The Zen of Python is a collection of
19 “guiding principles,” written by Tim Hands—on session
Peters, for writing computer programs import this

that influence the design of the Python
programming language.

3/27

Brief history & Zen of Python

Python vs Perl
Perl “There’s more than one way to do it’ (TMTOWTDI)

Python “ There should be one — and preferably only one —
obvious way to do it."

3/27

Brief history & Zen of Python

Python vs Perl
Perl “There's more than one way to do it’ (TMTOWTDI)

Python “There should be one — and preferably only one —
obvious way to do it."

Perl Do we have a new “need”? Let's define a new
operator!
Python The least amount operators and keywords we have,
the better it is! |

3/27

Why Python?

/

T LEARNED ITLAST
NIGHT! EVERYTHING
1S S0 SIMPLE!

!

HELLO WORLD 15 JUST
print "Hello, world!"

T DUNNO...
DYNAMIC TYPING?
WHITEGPACET

COME JoIN US!
PROGRAIMMING
1S FUN AGAIN!
IT'S A WHOLE
NEW WORLD
“ UP HERE!

BUT HOW ARE
YOU FLYING?

T JUST TYPED
import ontigravity
s e

... T ALS0 SAMPLED
EVERYTHING IN THE
MEDICINE CABINET
FOR COMPARISON.
/
BUT I THINK THIS
1S THE PYTHON.

Python on XKCD. Available at https://xkcd.com/353/

p/27

https://xkcd.com/353/

Why Python?

e It's FREE and available on many platforms/OS. Easy and
intuitive syntax.

e Multi-paradigm (procedural, object oriented, functional)
e Ability to design/develop complex programs in a fast way.

e Large availability of libraries/modules.

e Huge community/diffusion (easy to get help).

4/27

Why Python?

It's FREE and available on many platforms/OS. Easy and
intuitive syntax.

Multi-paradigm (procedural, object oriented, functional)

Ability to design/develop complex programs in a fast way.

Large availability of libraries/modules.

Huge community/diffusion (easy to get help).

It's an interpreted language (performances)

Sometimes looks like a black box (debugging not always
straightforward).

4/27

Differences between compiled and interpreted languages

Compiled
e To run the code you need to
compile it (i.e., convert into
machine code) first, and
then run the executable.

e The executable written in
machine code is tailored on
the “system” (architecture,
0S, etc.) on which the
source is compiled.

e Syntax (and others) errors
are checked during

compilation.

5/27

Differences between compiled and interpreted languages

Compiled
e To run the code you need to
it (i.e., convert into
machine code) first, and
then run the executable.

e The executable written in
machine code is on
the “system” (architecture,
0S, etc.) on which the

source is compiled.

e Syntax (and others) errors
are checked

Interpreted
e The code is parsed by an

which runs it into a

virtual machine.

e The interpreter
instruction at runtime (affects
performances).

e Syntax errors checks and
debugging are done at
(i.e., you may get errors only
when the execution reaches a
given instruction in the source
code).

every

v

5/27

Code markup and PEP 8

e One of G. van Rossum's key insights is that “code is read
much more often than it is written”. Therefore: “Readability
counts”!

PEP 8 — Style Guide for Python Code. Available at: https://www.python.org/dev/peps/pep-0008/ j

6/27

https://www.python.org/dev/peps/pep-0008/

Code markup and PEP 8

e One of G. van Rossum's key insights is that “code is read
much more often than it is written”. Therefore: “Readability
counts”!

e In Python the code’s markup is not merely aesthetic:
it is part of the syntax!

PEP 8 — Style Guide for Python Code. Available at: https://www.python.org/dev/peps/pep-0008/ J

6/27

https://www.python.org/dev/peps/pep-0008/

Code markup and PEP 8

e One of G. van Rossum's key insights is that “code is read
much more often than it is written”. Therefore: “Readability
counts”!

e In Python the code’s markup is not merely aesthetic:
it is part of the syntax!

e Python’s markup makes the existence of delimiters like ; { }
(C/C++), or statement like END DO (Fortran) superfluous.

PEP 8 — Style Guide for Python Code. Available at: https://www.python.org/dev/peps/pep-0008/ J

6/27

https://www.python.org/dev/peps/pep-0008/

Code markup and PEP 8

if,(a>ub):

print('a,is greater than.5')

else:

print('a issmaller, than, or ,equal, to,56')

Correct
if,(a>ub):

uuuuprint ('a isygreater;than;5')

| \

else:

uouuprint ('aissmaller than or equal to,5")

6/27

Code markup and PEP 8

import sys, os

<

import sys

import os

6/27

Code markup and PEP 8

foo =

long_function_name(var_one, var_two,

var_three, var_four)

V.

foo =

long_function_name(var_one, var_two,

var_three, var_four)

6/27

Code markup and PEP 8

X =1 x =1

y =2 y =2

long_variable long_variable = 3

spam(ham[1 1, { eggs: 2 }) spam(ham[1], {eggs: 2}))

Note:
These examples do not produce a Syntax Error but worsen the
code’s readability (Pet Peeves).

6/27

Basics of Python

The interpreter

e We can execute Python code

either by writing it directly

python

within the interpreter or by or

asking it to parse a script

python myprogram.py
file.

If you have multiple versions of Python installed on your machine,
check to which one the command python points to!

(e.g., python3)

7/27

The interpreter

e The interpreter compiles the
source in bytecode and then
the latter is executed by a
virtual machine (i.e., like

Java).

7/27

The interpreter

e The interpreter is an
excellent interactive
calculator! It prints the
value of every “meaningful”
expression.

>>> 34 + 55 - 2%x%4

73

7/27

The interpreter

>>> 34 + 55/0 - 2x%4

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ZeroDivisionError: division by zero

>>>

e The interpreter never dies,

regardless of the severity of

Or

the error!

>>> 34 + 55 - log(10)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'log' is not defined

>>>

7/27

The interpreter

e The MOST IMPORTANT

function in Python is >>> import numpy as np
help()! >>> help(np.linspace)
o Stackoverflow: https://stackoverflow.com/ J

7/27

https://stackoverflow.com/

Our first program: Hello, World!

8/27

Our first program: Hello, World!

Python
C >>> print('Hello, World!') J
1 #include <stdio.h>
2 or equivalently
3 int main()
1 A >>> print('Hello, ', 'World!‘)J
5 printf("Hello, World!");
6 return 0;
or even
7}

>>> print('Hello,' 'World!')]

8/27

Variables’ type

In Python, you have the following built-in variable types:

Type ‘ Denomination ‘ Example
int integer a=>5
float floating point a=5.5
complex | complex numbers | a = 5 + 3j
bool boolean a = True

. a = 'Hello'
str string
a = "Hello"
None None type a = None

How do we know the type of a variable (e.g., x)7

type (%) /27

Operators

Arithmetic

Operator ‘ Denomination ‘ Example
+ sum 5+ 4 =09
- subtraction 5-4=1
* multiplication | 3 * 5 = 15
/ division 20 / 4 =5
% modulus 20 % 4 =0
% power 2%%x3 = 8
// floor division 21 // 4 =5

Note

Python automatically recognizes the type of the variables and “adapts” the type of the
result. For instance

| A\

>>> 3 + 5 >>> 3 % 5.0 >>> 21 / 4
>>> 8 >>> 15.0 >>> 5.25

10/27

IiaEHIHHHHiII

Assignment

Operator ‘ Example ‘ Equivalent to

= x =5 -
+= x += 5 x=x+5
-= x =5 x=x -5
*= x *¥= 5 x =x %5
/= x /=5 x=x/5
%= x %= 5 x=x%5
*k= X **x= b X = x**5
//= x //=5 | x=x//5

In agreement with the its philosophy, Python does not have the ++

and -- operators (redundant). .

Operators

The = operator is much more than what it looks like. However, for
our purposes, we can consider it a “copy” operator like in C or
Fortran.)
(Handson .
>>>a =5

>>> b = 6

>>> print(a,b)

56

>>> a =>

>>> print(a,b)

6 6

>>> b =4

>>> print(a,b)

64 10/27

Operators

Comparison

Operator Denomination Example

== equal to X ==y
1= not equal to x =y
> greater than X >y
< less than x <y
>= greater or equal to | x >= y
<= less or equal to | x <=y
Logic
Operator Description Example
Returns True if both
and x > 5 and x < 10
statements are True
Returns True if one
or . x < 5 or x < 10
of the statements is True
not Reverse the result not(x > 5 and x < 10)

D/27

Identity

Operator ‘ Description ‘ Example

) Returns True if both ;

is . . x is

variables are the same object J
Returns True if both

is not : : X 1S not
variables are not the same object J

Membership
Operator ‘ Description ‘ Example
Returns True if a sequence | >>> a = [1,2,3,4]
in with a given value >>> 2 in a

is present in the object True

i Returns True if a sequence i
not in . . . 7 not in a
is not present in the object

10/27

Data structures

Python comes with a rich set of built-in types of data structures!
tuple, list, set, and dictionary.

These structures can be combined together and allow for nested lev-
els. Such an availability of data structures (one of the main advan-
tages of Python) makes the code more versatile, allowing to tackle
more easily complex problems. In other languages (e.g., C or For-
tran) either you have to “import” these data structures using external

libraries, or you have to implement them from scratch.

® https://docs.python.org/3/tutorial/datastructures.html)

11/27

https://docs.python.org/3/tutorial/datastructures.html

Tuples

A tuple is a container of objects that cannot be modified!]

>>> a = tuple() # empty tuple
>>> b = () # empty tuple

>>> print(a)

O

>>> type(b)

<class [kuple‘>

>>> a =1,2,3 # filled tuple
>>> print(a)

1, 2, 3)

>>> type(a)

<class [ﬁuple‘>

>>> b = (4,5,6) # filled tuple
>>> print(b)
(4, 5, 6)

v

>>> a = (1,2,3) # filled tuple
>>> al[0] = 5
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support
item assignment

12/27

Notel

The elements of a tuple do not have to be of the same type! (To
have the same in C, you need to use a struct)

>>> a = (1,'ciao!',-125.4)
>>> type(a)
<class mtuple >

| \

Note2

Tuples can be nested!

>>> ¢ = (1,2,("alpha","beta"), 12.4, -3.5)
>>> type(c)

<class mtuple‘>

>>> type(c[0])

<class mint’>

>>> type(c[2])

<class mtuple‘>

12/27

How many elements has a
tuple? The answer is provided
by the 1en() function!

We can perform operations
with tuples.

>>> a = (1,'ciao!',-125.4)
>>> len(a)

>>> a = (1,2,3)

>>> b = (4,5,6)

>>> a+b

(1, 2, 3, 4, 5, 6)

>>> ax2

(1, 2, 3, 1, 2, 3)

>>> axb

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: can't multiply sequence

by non-int of type 'tuple'

12/27

II!HH%III

A list is a “modifiable’ tuple.]

>>> a = list() # empty list

>>> b = [1 # empty list

>>> type(a) >>> a = [1,2,3]
<class [hist‘> >>> print(a)
>>> type(b) [1, 2, 3]
<class [ﬁist‘> >>> al0] = -1
>>> print(a) >>> print(a)

(] (-1, 2, 3])
>>> b = [4,5,6] # filled list

>>> print(b)

[4, 5, 6]

) 13/27

Lists

Lists are more “powerful” than tuples ...

>>> a = [1,10,34,-5,3.9, 'hello']

>>> a.append('world') # appending a value to a list

>>> print(a)

[1, 10, 34, -5, 3.9, 'hello', 'world']

>>> a.remove(34) # removing a value from a list

>>> print(a)

[1, 10, -5, 3.9, 'hello', 'world']

>>> a.extend([-1,-11) # eztending a list (alternatively, we can sum them)
>>> print(a)

[1, 10, -5, 3.9, 'hello', 'world', -1, -1]

>>> a.insert(2, -100.) # inserting (-100) at a given position (2)
>>> print(a)

[1, 10, -100.0, -5, 3.9, 'hello', 'world', -1, -1]

>>> b = a.pop(5) # eztracting the 5-th element of the list

>>> print(a, "\n", b)

[1, 10, -100.0, -5, 3.9, 'world', -1, -1]

hello

\ =

3/27

a=1[1,3,5,5,7,9,1]
a.index(5) # return the index of the first occurrence of (5)

a.count(1) # counts how many occurrences of (1) there are

a.sort() # sort the list

print(a)

1, 3, 5, 5, 7, 9]

a.reverse() # reverse the elements of a list
print(a)

Ty By By 8p iy 1]

List & membership

We can use the membership

>>>a=[1, 3, 5, 5, 7, 9, 1] . . .
55> 7 in a operators to verify if a certain

True

“object” belongs to a data

>>> -7 in a

False

structure

13727

Sets

A set is an ensemble of unique elements. Sets are not “ordered”
(i.e., they are ordered automatically to speed up search operations)

V.

>>> a = set() # empty set

>>> type(a)

<class Hset'>

>>> print(a)

set()

>>> len(a) # set's number of elements

0

>>> a.add(1) # adding an element to the set
>>> a

{12}

>>> len(a)

1 14/27

>>> len('abracadabra')

11

>>> a = set('abracadabra')

>>> print(a)

{'p', 'd', 'c', 'r', 'a'} # the order is changed!
>>> len(a)

5

14/27

On sets, we can perform
operations like union,
intersection, and difference
(also symmetric).

There exists also the
“function” version of set
operators (e.g., A.union(B)
is equivalent to A | B).

sets are defined
{0, 2, 4, 6, 8}
{1, 2, 3, 4, 5}

o =
n o

union
print("Union :", A | B)

intersection
print("Intersection :", A & B)

difference
print("Difference :", A - B)

symmetric difference

print("Symmetric difference :"

, A~ B)

14/27

The equivalent of tuples for sets are called frozenset.

>>> b = frozenset([0,1,5])
>>> type(b)
<class [ﬁrozenset'>
>>> print(b, ' Nr. elements = ', len(b))
frozenset ({0, 1, 5}) Nr. elements = 3
>>> b.add(7)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: 'frozenset' object has no attribute 'add'

v

14/27

Dictionaries

Dictionaries are an implementation of associative arrays. They are
structures implementing a correspondence between a key and a
value. Like sets, dictionaries are not ordered, and their “frozen
version” is called frozendict.

key 1l —» value 1
key 2 —» value 2

k@yg —

key 4 —> value 3

key 4 —><> value 4

® https://en.wikipedia.org/wiki/Associative_array]}/27

https://en.wikipedia.org/wiki/Associative_array

Dictionaries

>>> a = dict() # empty dictionary

>>> b = {} # empty dictionary

>>> type(a)

<class Hdict'>

>>> type(b)

<class mdict'>

>>> # you can initialize a dict by filling <t!

>>> a = {'keyl': (10,20), 'key2': None}

>>> print(a)

{'keyl': (10, 20), 'key2': None}

>>> al['key3'] = {'key31l': 'mystr'} # adding a new key
>>> print(a)

{'key3': {'key31': 'mystr'}, 'keyl': (10, 20), 'key2': None}

15/27

Dictionaries

Playing with dictionaries ... |
As dictionaries are “not ordered’ containers, it is important to
understand how to use them.

4

>>> a = {'keyl': (10, 20), 'key2': None, 33: {'key31': 'mystr'l}}
>>> # listing the dictionary keys

>>> a.keys()

dict_keys([33, 'keyl', 'key2'l)

>>> # listing the dictionary values

>>> a.values()

dict_values([{'key31': 'mystr'}, (10, 20), Nomel])

>>> # accessing the wvalue corresponding to a given key

>>> print(al'keyl'])

(10, 20)

15/27

Dictionaries

Playing with dictionaries ... Il
How can we “visualize” a dictionary? We can use the method
.items ()!

v

>>> for k,v in a.items():

print('key = ', k, '\tvalue = ', v)
key = 33 value = {'key31': 'mystr'}
key = keyl value = (10, 20)
key = key2 value = None

.

To verify if a dictionary has a certain key, we can use:

>>> key in dict

5/27

Strings

A string is a tuple of characters.]
(Handson
>>> a = 'abracadabra'
>>> len(a)
11
>>> a[1]
b
>>> a[1] = 'c¢!
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item assignment)

16/27

Strings

A string’s delimiter could be ' or ". We can use either one or three
consecutive delimiters to define a string. This becomes handy when
quotes are part of the string itself.

>>> a = 'aaa'

>>> Db = "'"'aaa'""’

>>> a ==b>b

True

>>> ¢ = '''this is a veeery long string spanning two

lines having both 'single' and "double" quotes''!'
>>> type(c)
<class Hstr‘>

16/27

Playing with strings ...

Like for tuples, we can perform operations on strings
>>> a = 'abra'

>>> b = 'cadabra'

>>> print(a+b)

abracadabra

>>> print(a+'\t'+b)

abra cadabra |

Python uses the same escape characters as C (i.e., \n, \t, and \r).

v

16/27

Playing with strings ...

>>> a = 'Hello World!'

>>> print(a.lower())

hello worldm

>>> print(a.upper())

HELLO WORLD!|

>>> print(a.replace('o','x')) # replacing 'o' with 'z'
Hellx Wxrld)|

>>> print(a.find('lo')) # returns the position of 'lo'’
3

>>> print(a.split(' ')) # split when a space ' ' occurs
['Hello', 'World!'l # Note: the output is a list!

16/27

Playing with strings ...
>>> a = 'Hello World!'
>>> print(a.tofrench())
Bonjour tout le mondem
>>> print(a.tospanish())
Hola a todo el mundom
>>> print(a.toitalian())
Ciao mondom

16/27

Playing with strings ...
>>> a = 'Hello World!'
>>> print(a.tofrench())
Bonjour tout le mondem
>>> print(a.tospanish())
Hola a todo el mundom
>>> print(a.toitalian())
Ciao mondom

Just kidding, these functions do not exist! :-P |

16/27

Control of flow

In accordance with its philosophy, Python does not have many
statements to control the flux of the instructions. There are,

basically, three statements:

if-elif-else, while, and for

® https://docs.python.org/3/tutorial/controlflow. html }

17/27

https://docs.python.org/3/tutorial/controlflow.html

The if statement

basic if

>>> ifa==_b:
. .uuuuuprint ('agispequal toyb!)
..pelse:
. cuupuuprint (agisgnot equal to b')

We can combine conditions (e.g.,
((a >= 5) and (a <= 10)))

“advanced” if
>>> if a < b:
print('a is less than five')
. elif a ==
print('a is equal to five')
- @lEes
print('a is more than five')

Contrary to C, Python does not
have a switch statement.

(less operators = better!)

18/27

The while loop

The while statement is a loop with a condition)

>>>
>>>
>>>

b o [Zo [Fb b [Ehoo
I

i=0

mycheck = True

while mycheck: # runs until True
print('i = ', i)
i+=1
if i > b:

mycheck = False

g H» W NN = O

If not handled carefully,
while loops can become
endless!

19/27

The for loop

10

11

13

#include <stdio.h>

int i;

int main()

{
for(i=0; i<10; i++)
{
printf("i = %d\n", i);
}
return 0;
}

Python
1 >>> for i in range(10):
2 aoa print('i = ', i)

3

20/27

The for loop

The range function

The function range returns a so-called iterator.

range(start, stop, step)

It produces a sequence of integers from start (included) to stop
(excluded) spaced of step.)
(Handson
>>> print([i for i in range(5)])

(o, 1, 2, 3, 4]

>>> print([i for i in range(0,15,3)])
o, 3, 6, 9, 12]

>>> print([i for i in range(100,0,-20)1)
(100, 80, 60, 40, 20]

v
20/27

The for loop

In reality, the for statement in Python is much more “powerful”

than its C counterpart!

In fact, the for statement allows to iterate over any /terable object.

20/27

The for loop

C

#include <stdio.h>

int 1i;
int vals[] = {10,15,20,25};

int main()
{
for(i=0; i<4; i++)
{
/#* do something with array */
printf("vall/d] = %d\n", i, vals[i]);

return 0;

Python

>>> for i in [10,15,20,25]:

print('i = ', i)

alternatively
>>> a = [10,15,20,25]

>>> for i in range(len(a)):

print('vall',i,'] = ', a[il)

20/27

The for loop

>>> a = {'keyl': 10,
'key2': [2., 3.5],
3: {'key31': None, 'key32': ('alpha', 'beta')}

}

>>> for k in a.keys():
print (k)

3

keyl

key2

20/27

The break & continue

break continue
It forces the exit from the cycle Allows to “jump” to the next
iteration)
>>> for i in range(10000): | [EENERUTTTEEE
print('i = ', i) >>> for i in range(4):
if i%3 == 2: if 1 ==
break 000 continue
print('i = ', i)
i= 0
i= 1 i= 0
i= 2 i= 2
i= 3)

21/27

The print function

In Python 3, the print function has become much more
powerfull /flexible than before (in Python 2.7 it was a statement)!

print (*objects, sep=' ', end='\n', file=sys.stdout, flush=False)

Examples

>>> a = ['This', 'is', 'a', 'sentence']

>>> print(*a) # the *a "expands" the content of a

This is a sentence

>>> # we can change the separator between the elements of a
>>> print(*a, sep=' *.x ')

This #*.% is #*.% a *.* sentence

>>> # we can define what is appended at end of the print
>>> print(xa, sep=' *.* ', end='\nEND\nCIAO CIAO!\n')
This *.* is *.* a *.* sentence

END

CIAD CIAQ)Y

v,
22/27

® https://docs.python.org/3/library/functions.html#print [’

https://docs.python.org/3/library/functions.html#print

The print function

How can we format the output of the print? J

22/27

The print function

Examples

>>> vall = 35.866

>>> val2 = 22.0

>>> # formatting a string

>>> s = 'vall = {:.2f} while val2 = {:.0f}'.format(vall, val2)
>>> print(s)

>>>

>>> # using str format directly inside print

>>> print('vall = {:.2f} while val2 = {:.0f}'.format(vall, val2))
>>>

>>> # using string literals (or f-strings) (only for Python > 3.6.z)
>>> print(f'vall = {vall:.2f} while val2 = {val2:1}')

>>>

>>> # The "old" way

>>> print('vall = .2f while val2 = %d' % (vall, val2))

They all produce the same output!

vall = 35.87 while val2 = 22

22/27

® https://docs.python.org/3/tutorial/inputoutput.html [

https://docs.python.org/3/tutorial/inputoutput.html

Hands-on Session

Exercise 1

Tasks
1. Compute the product between the following matrices
0 1 -5 7 3 —4
A=13 10 2 B=|1 0 —-1]{,
-1 1 0 5 2 -5

and print it on screen.

2. Generate lists of 5, 10, 20, 50, 100, 1000, 50000, 1000000,
and 10000000 random numbers in the [0, 1) interval, compute
their averages and standard deviations, and print their
evolution with respect to the size of the sample (with a

precision of 5 and 8 decimals, respectively).

23/27

Exercise 1

Random numbers

To generate random numbers in
the [0,1) interval, we can use the
following code

load the random module
(do only once)

import random as rnd

extract a random number

r = rnd.random()

Square root

The square root function is
available through the math
module

import math

compute the square Toot

mysqrt = math.sqrt()

There are ways to compute the standard deviation without the need

to store all the values. See: https://en.wikipedia.org/wiki/

Standard_deviation#Rapid_calculation_methods

28/27

https://en.wikipedia.org/wiki/Standard_deviation#Rapid_calculation_methods
https://en.wikipedia.org/wiki/Standard_deviation#Rapid_calculation_methods

Exercise 2

Tasks
After loading Martin Scorsese’s filmography from file, arrange the
information into a dictionary and answer to the following questions:

How many movies has he directed?
What is the time span of Scorsese's career?
What is the title of his oldest movie?

How many movies he has also produced?

@l > e =

How many movies he has produced and written?

Print the answers on screen all at once!

24/27

Exercise 2

Load the input file

dirin = '<relative path to the file>'
fnamein = 'scorsese_filmography.txt'

fnamein = dirin+fnamein

with open(fnamein) as fin:
next(fin) # skipping the first row
for line in fin:
splitting each line into
a list of strings
mystr = line.split(";")

Transfer the content of mystr
into wvariables

maximum & minimum
a=[1,2,3]

mymax = max(a)

mymin = min(a)

The lines of the file are
parsed as strings! You
have to convert them (e.g.,

using the int () function).

v

24/27

Bibliography i

[Homepage of the Python programming language. Available at:
https://www.python.org/

[d HTML.it, Guida al linguaggio Python. Available at:
https://www.html.it/guide/guida-python/

[§ Python PEP-8 directive. Available at:
https://www.python.org/dev/peps/pep-0008/

[Homepage of the Stackoverflow website. Available at:
https://stackoverflow.com/

[§ Python 3 documentation. Available at:
https://docs.python.org/3/

25/27

https://www.python.org/
https://www.html.it/guide/guida-python/
https://www.python.org/dev/peps/pep-0008/
https://stackoverflow.com/
https://docs.python.org/3/

Bibliography ii

B

Python 3 documentation, Data structures. Available at:

https://docs.python.org/3/tutorial/datastructures.html

Associative array. Available at:
https://en.wikipedia.org/wiki/Associative_array

Python 3 documentation, Control of flow. Available at:
https://docs.python.org/3/tutorial/controlflow.html

Python 3 documentation, The print function. Available at:
https://docs.python.org/3/library/functions.html#print

Python 3 documentation, Output format. Available at:
https://docs.python.org/3/tutorial/inputoutput.html

26/27

https://docs.python.org/3/tutorial/datastructures.html
https://en.wikipedia.org/wiki/Associative_array
https://docs.python.org/3/tutorial/controlflow.html
https://docs.python.org/3/library/functions.html#print
https://docs.python.org/3/tutorial/inputoutput.html

Bibliography iii

[4 Wikipedia, Rapid calculation method for standard deviation.
Available at: https://en.wikipedia.org/wiki/Standard_

deviation#Rapid_calculation_methods

[Martin Scorsese’s filmography. Available at: https:

//en.wikipedia.org/wiki/Martin_Scorsese_filmography

27/27

https://en.wikipedia.org/wiki/Standard_deviation#Rapid_calculation_methods
https://en.wikipedia.org/wiki/Standard_deviation#Rapid_calculation_methods
https://en.wikipedia.org/wiki/Martin_Scorsese_filmography
https://en.wikipedia.org/wiki/Martin_Scorsese_filmography

	Foreword
	History & Philosophy of Python
	Basics of Python
	Hands-on Session

