
Lesson 1: First steps with Python

Alessio Cardillo

Department of computer science and mathematics (DΣIM),

Universitat Rovira i Virgili, Tarragona, Spain

Python Days

Dept. of physics and astronomy � University of Catania, Catania, Italy

Foreword

Who is Alessio Cardillo?

� MSc in physics at UniCT in

2010.

� PhD in physics at UniZar in

2014.

� More than 6 year of

postdoctoral experience.

� Working on applications of

statistical physics &

nonlinear dynamics with a

strong focus on numerical

computation and data

analysis.

� Fortran 77 → C → Python

1/27

Who is Alessio Cardillo?

� MSc in physics at UniCT in

2010.

� PhD in physics at UniZar in

2014.

� More than 6 year of

postdoctoral experience.

� Working on applications of

statistical physics &

nonlinear dynamics with a

strong focus on numerical

computation and data

analysis.

� Fortran 77 → C → Python

1/27

Who is Alessio Cardillo?

� MSc in physics at UniCT in

2010.

� PhD in physics at UniZar in

2014.

� More than 6 year of

postdoctoral experience.

� Working on applications of

statistical physics &

nonlinear dynamics with a

strong focus on numerical

computation and data

analysis.

� Fortran 77 → C → Python

1/27

Who is Alessio Cardillo?

� MSc in physics at UniCT in

2010.

� PhD in physics at UniZar in

2014.

� More than 6 year of

postdoctoral experience.

� Working on applications of

statistical physics &

nonlinear dynamics with a

strong focus on numerical

computation and data

analysis.

� Fortran 77 → C → Python
1/27

Outline of the course/lesson

What this course is

� An introduction (almost) from

scratch to Python.

� A course oriented to people

interested in scienti�c

computing and quantitative

data analysis.

� A primer on some mainstream

applications (visualization and

data analysis).

� The (personal) view of a

physicist on the topic.

What this course is not

� A COMPLETE (and deep)

course on the Python language.

� A tailored solution to single

user's problems.

� A denigratory comparison

between Python and other

languages (e.g., C).

2/27

Outline of the course/lesson

Course

1. Introduction to the basics of the Python language.

2. More �basics� of Python & basics of NumPy.

3. IPython notebook & Visualization of data (Matplotlib).

4. Data analysis (Pandas).

Lesson 1

� History & philosophy of Python

� Basics of Python

� (short) Hands-on session

2/27

Outline of the course/lesson

Course

1. Introduction to the basics of the Python language.

2. More �basics� of Python & basics of NumPy.

3. IPython notebook & Visualization of data (Matplotlib).

4. Data analysis (Pandas).

2/27

Outline of the course/lesson

Course

1. Introduction to the basics of the Python language.

2. More �basics� of Python & basics of NumPy.

3. IPython notebook & Visualization of data (Matplotlib).

4. Data analysis (Pandas).

2/27

Outline of the course/lesson

Course

1. Introduction to the basics of the Python language.

2. More �basics� of Python & basics of NumPy.

3. IPython notebook & Visualization of data (Matplotlib).

4. Data analysis (Pandas).

2/27

History & Philosophy of Python

Brief history & Zen of Python

� Developed in Amsterdam by a

computer scientist named

Guido van Rossum

3/27

Brief history & Zen of Python

� �Over six years ago, in December

1989, I was looking for a "hobby"

programming project that would keep

me occupied during the week around

Christmas. [. . .] I decided to write an

interpreter for the new scripting

language I had been thinking about

lately: a descendant of ABC that

would appeal to Unix/C hackers. I

chose Python as a working title for the

project, being in a slightly irreverent

mood (and a big fan of Monty

Python's Flying Circus).�

3/27

Brief history & Zen of Python

� Up to 2018, van Rossum had the title

of �Benevolent Dictator For Life� of

Python

3/27

Brief history & Zen of Python

� Last release of Python2 is the 2.7.x

(EOL Jan. 2020). Latest release of

Python3 is 3.9.x

3/27

Brief history & Zen of Python

Zen of Python

The Zen of Python is a collection of

19 �guiding principles,� written by Tim

Peters, for writing computer programs

that in�uence the design of the Python

programming language.

Hands-on session

import this

3/27

Brief history & Zen of Python

Python vs Perl

Perl �There's more than one way to do it� (TMTOWTDI)

Python �There should be one � and preferably only one �

obvious way to do it.�

3/27

Brief history & Zen of Python

Python vs Perl

Perl �There's more than one way to do it� (TMTOWTDI)

Python �There should be one � and preferably only one �

obvious way to do it.�

Perl Do we have a new �need�? Let's de�ne a new

operator!

Python The least amount operators and keywords we have,

the better it is!

3/27

Why Python?

Python on XKCD. Available at https://xkcd.com/353/ 4/27

https://xkcd.com/353/

Why Python?

Pros:

� It's FREE and available on many platforms/OS. Easy and

intuitive syntax.

� Multi-paradigm (procedural, object oriented, functional)

� Ability to design/develop complex programs in a fast way.

� Large availability of libraries/modules.

� Huge community/di�usion (easy to get help).

4/27

Why Python?

Pros:

� It's FREE and available on many platforms/OS. Easy and

intuitive syntax.

� Multi-paradigm (procedural, object oriented, functional)

� Ability to design/develop complex programs in a fast way.

� Large availability of libraries/modules.

� Huge community/di�usion (easy to get help).

Cons:

� It's an interpreted language (performances)

� Sometimes looks like a black box (debugging not always

straightforward).

4/27

Di�erences between compiled and interpreted languages

Compiled

� To run the code you need to

compile it (i.e., convert into

machine code) �rst, and

then run the executable.

� The executable written in

machine code is tailored on

the �system� (architecture,

OS, etc.) on which the

source is compiled.

� Syntax (and others) errors

are checked during

compilation.

5/27

Di�erences between compiled and interpreted languages

Compiled

� To run the code you need to

compile it (i.e., convert into

machine code) �rst, and

then run the executable.

� The executable written in

machine code is tailored on

the �system� (architecture,

OS, etc.) on which the

source is compiled.

� Syntax (and others) errors

are checked during

compilation.

Interpreted

� The code is parsed by an

interpreter which runs it into a

virtual machine.

� The interpreter translates every

instruction at runtime (a�ects

performances).

� Syntax errors checks and

debugging are done at runtime

(i.e., you may get errors only

when the execution reaches a

given instruction in the source

code).

5/27

Code markup and PEP 8

� One of G. van Rossum's key insights is that �code is read

much more often than it is written�. Therefore: �Readability

counts�!

� In Python the code's markup is not merely aesthetic:

it is part of the syntax!

� Python's markup makes the existence of delimiters like ; { }

(C/C++), or statement like END DO (Fortran) super�uous.

PEP 8 � Style Guide for Python Code. Available at: https://www.python.org/dev/peps/pep-0008/

6/27

https://www.python.org/dev/peps/pep-0008/

Code markup and PEP 8

� One of G. van Rossum's key insights is that �code is read

much more often than it is written�. Therefore: �Readability

counts�!

� In Python the code's markup is not merely aesthetic:

it is part of the syntax!

� Python's markup makes the existence of delimiters like ; { }

(C/C++), or statement like END DO (Fortran) super�uous.

PEP 8 � Style Guide for Python Code. Available at: https://www.python.org/dev/peps/pep-0008/

6/27

https://www.python.org/dev/peps/pep-0008/

Code markup and PEP 8

� One of G. van Rossum's key insights is that �code is read

much more often than it is written�. Therefore: �Readability

counts�!

� In Python the code's markup is not merely aesthetic:

it is part of the syntax!

� Python's markup makes the existence of delimiters like ; { }

(C/C++), or statement like END DO (Fortran) super�uous.

PEP 8 � Style Guide for Python Code. Available at: https://www.python.org/dev/peps/pep-0008/

6/27

https://www.python.org/dev/peps/pep-0008/

Code markup and PEP 8

Wrong

if (a > 5):

print('a is greater than 5')

else:

print('a is smaller than or equal to 5')

Correct

if (a > 5):

 print('a is greater than 5')

else:

 print('a is smaller than or equal to 5')

6/27

Code markup and PEP 8

Wrong

import sys, os

Correct

import sys

import os

6/27

Code markup and PEP 8

Wrong

foo = long_function_name(var_one, var_two,

var_three, var_four)

Correct

foo = long_function_name(var_one, var_two,

var_three, var_four)

6/27

Code markup and PEP 8

Wrong

x = 1

y = 2

long_variable = 3

spam(ham[1], { eggs: 2 })

Correct

x = 1

y = 2

long_variable = 3

spam(ham[1], {eggs: 2})

Note:

These examples do not produce a Syntax Error but worsen the

code's readability (Pet Peeves).

6/27

Basics of Python

The interpreter

� We can execute Python code

either by writing it directly

within the interpreter or by

asking it to parse a script

�le.

Hands-on

python

or

python myprogram.py

Note

If you have multiple versions of Python installed on your machine,

check to which one the command python points to!

(e.g., python3)

7/27

The interpreter

� The interpreter compiles the

source in bytecode and then

the latter is executed by a

virtual machine (i.e., like

Java).

7/27

The interpreter

� The interpreter is an

excellent interactive

calculator! It prints the

value of every �meaningful�

expression.

Hands-on

>>> 34 + 55 - 2**4

73

7/27

The interpreter

� The interpreter never dies,

regardless of the severity of

the error!

Hands-on

>>> 34 + 55/0 - 2**4

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ZeroDivisionError: division by zero

>>>

Or

>>> 34 + 55 - log(10)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name 'log' is not defined

>>>

7/27

The interpreter

� The MOST IMPORTANT

function in Python is

help()!

Hands-on

>>> import numpy as np

>>> help(np.linspace)

• Stackover�ow: https://stackoverflow.com/

7/27

https://stackoverflow.com/

Our �rst program: Hello, World!

8/27

Our �rst program: Hello, World!

C

1 #include <stdio.h>

2

3 int main()

4 {

5 printf("Hello, World!");

6 return 0;

7 }

Python

>>> print('Hello, World!')

or equivalently

>>> print('Hello,', 'World!')

or even

>>> print('Hello,' 'World!')

8/27

Variables' type

In Python, you have the following built-in variable types:

Type Denomination Example

int integer a = 5

float �oating point a = 5.5

complex complex numbers a = 5 + 3j

bool boolean a = True

str string
a = 'Hello'

a = "Hello"

None None type a = None

Hands-on

How do we know the type of a variable (e.g., x)?

type(x) 9/27

Operators

Arithmetic

Operator Denomination Example

+ sum 5 + 4 = 9

- subtraction 5 - 4 = 1

* multiplication 3 * 5 = 15

/ division 20 / 4 = 5

% modulus 20 % 4 = 0

** power 2**3 = 8

// �oor division 21 // 4 = 5

Note

Python automatically recognizes the type of the variables and �adapts� the type of the

result. For instance:

>>> 3 + 5

>>> 8

>>> 3 * 5.0

>>> 15.0

>>> 21 / 4

>>> 5.25
10/27

Operators

Assignment

Operator Example Equivalent to

= x = 5 �

+= x += 5 x = x + 5

-= x -= 5 x = x - 5

*= x *= 5 x = x * 5

/= x /= 5 x = x / 5

%= x %= 5 x = x % 5

= x **= 5 x = x5

//= x //= 5 x = x//5

Note

In agreement with the its philosophy, Python does not have the ++

and -- operators (redundant).
10/27

Operators

Note

The = operator is much more than what it looks like. However, for

our purposes, we can consider it a �copy� operator like in C or

Fortran.

Hands-on

>>> a = 5

>>> b = 6

>>> print(a,b)

5 6

>>> a = b

>>> print(a,b)

6 6

>>> b = 4

>>> print(a,b)

6 4
10/27

Operators

Comparison

Operator Denomination Example

== equal to x == y

!= not equal to x != y

> greater than x > y

< less than x < y

>= greater or equal to x >= y

<= less or equal to x <= y

Logic

Operator Description Example

and
Returns True if both

x > 5 and x < 10
statements are True

or
Returns True if one

x < 5 or x < 10
of the statements is True

not Reverse the result not(x > 5 and x < 10)
10/27

Operators

Identity

Operator Description Example

is
Returns True if both

x is y
variables are the same object

is not
Returns True if both

x is not y
variables are not the same object

Membership

Operator Description Example

in

Returns True if a sequence >>> a = [1,2,3,4]

with a given value >>> 2 in a

is present in the object True

not in
Returns True if a sequence

7 not in a
is not present in the object

10/27

Data structures

Python comes with a rich set of built-in types of data structures!

tuple, list, set, and dictionary.

These structures can be combined together and allow for nested lev-

els. Such an availability of data structures (one of the main advan-

tages of Python) makes the code more versatile, allowing to tackle

more easily complex problems. In other languages (e.g., C or For-

tran) either you have to �import� these data structures using external

libraries, or you have to implement them from scratch.

• https://docs.python.org/3/tutorial/datastructures.html

11/27

https://docs.python.org/3/tutorial/datastructures.html

Tuples

A tuple is a container of objects that cannot be modi�ed!

Hands-on

>>> a = tuple() # empty tuple

>>> b = () # empty tuple

>>> print(a)

()

>>> type(b)

<class 'tuple'>

>>> a = 1,2,3 # filled tuple

>>> print(a)

(1, 2, 3)

>>> type(a)

<class 'tuple'>

>>> b = (4,5,6) # filled tuple

>>> print(b)

(4, 5, 6)

>>> a = (1,2,3) # filled tuple

>>> a[0] = 5

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: 'tuple' object does not support

item assignment

12/27

Tuples

Note1

The elements of a tuple do not have to be of the same type! (To
have the same in C, you need to use a struct)

>>> a = (1,'ciao!',-125.4)

>>> type(a)

<class 'tuple'>

Note2

Tuples can be nested!

>>> c = (1,2,("alpha","beta"), 12.4, -3.5)

>>> type(c)

<class 'tuple'>

>>> type(c[0])

<class 'int'>

>>> type(c[2])

<class 'tuple'>

12/27

Tuples

Question

How many elements has a

tuple? The answer is provided

by the len() function!

We can perform operations

with tuples.

Hands-on

>>> a = (1,'ciao!',-125.4)

>>> len(a)

3

>>> a = (1,2,3)

>>> b = (4,5,6)

>>> a+b

(1, 2, 3, 4, 5, 6)

>>> a*2

(1, 2, 3, 1, 2, 3)

>>> a*b

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: can't multiply sequence

by non-int of type 'tuple'

12/27

Lists

A list is a �modi�able� tuple.

Hands-on

>>> a = list() # empty list

>>> b = [] # empty list

>>> type(a)

<class 'list'>

>>> type(b)

<class 'list'>

>>> print(a)

[]

>>> b = [4,5,6] # filled list

>>> print(b)

[4, 5, 6]

>>> a = [1,2,3]

>>> print(a)

[1, 2, 3]

>>> a[0] = -1

>>> print(a)

[-1, 2, 3]

13/27

Lists

Lists are more �powerful� than tuples . . .

Hands-on

>>> a = [1,10,34,-5,3.9,'hello']

>>> a.append('world') # appending a value to a list

>>> print(a)

[1, 10, 34, -5, 3.9, 'hello', 'world']

>>> a.remove(34) # removing a value from a list

>>> print(a)

[1, 10, -5, 3.9, 'hello', 'world']

>>> a.extend([-1,-1]) # extending a list (alternatively, we can sum them)

>>> print(a)

[1, 10, -5, 3.9, 'hello', 'world', -1, -1]

>>> a.insert(2, -100.) # inserting (-100) at a given position (2)

>>> print(a)

[1, 10, -100.0, -5, 3.9, 'hello', 'world', -1, -1]

>>> b = a.pop(5) # extracting the 5-th element of the list

>>> print(a, "\n", b)

[1, 10, -100.0, -5, 3.9, 'world', -1, -1]

hello 13/27

Lists

Hands-on

>>> a = [1, 3, 5, 5, 7, 9, 1]

>>> a.index(5) # return the index of the first occurrence of (5)

2

>>> a.count(1) # counts how many occurrences of (1) there are

2

>>> a.sort() # sort the list

>>> print(a)

[1, 1, 3, 5, 5, 7, 9]

>>> a.reverse() # reverse the elements of a list

>>> print(a)

[9, 7, 5, 5, 3, 1, 1]

List & membership

>>> a = [1, 3, 5, 5, 7, 9, 1]

>>> 7 in a

True

>>> -7 in a

False

We can use the membership

operators to verify if a certain

�object� belongs to a data

structure
13/27

Sets

A set is an ensemble of unique elements. Sets are not �ordered�

(i.e., they are ordered automatically to speed up search operations)

Hands-on

>>> a = set() # empty set

>>> type(a)

<class 'set'>

>>> print(a)

set()

>>> len(a) # set's number of elements

0

>>> a.add(1) # adding an element to the set

>>> a

{1}

>>> len(a)

1 14/27

Sets

Hands-on

>>> len('abracadabra')

11

>>> a = set('abracadabra')

>>> print(a)

{'b', 'd', 'c', 'r', 'a'} # the order is changed!

>>> len(a)

5

14/27

Sets

On sets, we can perform

operations like union,

intersection, and di�erence

(also symmetric).

Note

There exists also the

�function� version of set

operators (e.g., A.union(B)

is equivalent to A | B).

Hands-on
sets are defined

A = {0, 2, 4, 6, 8}

B = {1, 2, 3, 4, 5}

union

print("Union :", A | B)

intersection

print("Intersection :", A & B)

difference

print("Difference :", A - B)

symmetric difference

print("Symmetric difference :", A ^ B)

14/27

Sets

Note

The equivalent of tuples for sets are called frozenset.

Hands-on

>>> b = frozenset([0,1,5])

>>> type(b)

<class 'frozenset'>

>>> print(b, ' Nr. elements = ', len(b))

frozenset({0, 1, 5}) Nr. elements = 3

>>> b.add(7)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

AttributeError: 'frozenset' object has no attribute 'add'

14/27

Dictionaries

Dictionaries are an implementation of associative arrays. They are

structures implementing a correspondence between a key and a

value. Like sets, dictionaries are not ordered, and their �frozen

version� is called frozendict.

• https://en.wikipedia.org/wiki/Associative_array 15/27

https://en.wikipedia.org/wiki/Associative_array

Dictionaries

Hands-on

>>> a = dict() # empty dictionary

>>> b = {} # empty dictionary

>>> type(a)

<class 'dict'>

>>> type(b)

<class 'dict'>

>>> # you can initialize a dict by filling it!

>>> a = {'key1': (10,20), 'key2': None}

>>> print(a)

{'key1': (10, 20), 'key2': None}

>>> a['key3'] = {'key31': 'mystr'} # adding a new key

>>> print(a)

{'key3': {'key31': 'mystr'}, 'key1': (10, 20), 'key2': None}

15/27

Dictionaries

Playing with dictionaries . . . I

As dictionaries are �not ordered� containers, it is important to

understand how to use them.

Hands-on

>>> a = {'key1': (10, 20), 'key2': None, 33: {'key31': 'mystr'}}

>>> # listing the dictionary keys

>>> a.keys()

dict_keys([33, 'key1', 'key2'])

>>> # listing the dictionary values

>>> a.values()

dict_values([{'key31': 'mystr'}, (10, 20), None])

>>> # accessing the value corresponding to a given key

>>> print(a['key1'])

(10, 20)

15/27

Dictionaries

Playing with dictionaries . . . II

How can we �visualize� a dictionary? We can use the method

.items()!

Hands-on

>>> for k,v in a.items():

... print('key = ', k, '\tvalue = ', v)

...

key = 33 value = {'key31': 'mystr'}

key = key1 value = (10, 20)

key = key2 value = None

Handy trick

To verify if a dictionary has a certain key, we can use:

>>> key in dict
15/27

Strings

A string is a tuple of characters.

Hands-on

>>> a = 'abracadabra'

>>> len(a)

11

>>> a[1]

'b'

>>> a[1] = 'c'

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: 'str' object does not support item assignment

16/27

Strings

A string's delimiter could be ' or ". We can use either one or three

consecutive delimiters to de�ne a string. This becomes handy when

quotes are part of the string itself.

Example

>>> a = 'aaa'

>>> b = '''aaa'''

>>> a == b

True

>>> c = '''this is a veeery long string spanning two

... lines having both 'single' and "double" quotes'''

>>> type(c)

<class 'str'>

16/27

Strings

Playing with strings . . .

Like for tuples, we can perform operations on strings

>>> a = 'abra'

>>> b = 'cadabra'

>>> print(a+b)

abracadabra

>>> print(a+'\t'+b)

abra cadabra

Note

Python uses the same escape characters as C (i.e., \n, \t, and \r).

16/27

Strings

Playing with strings . . .

>>> a = 'Hello World!'

>>> print(a.lower())

hello world!

>>> print(a.upper())

HELLO WORLD!

>>> print(a.replace('o','x')) # replacing 'o' with 'x'

Hellx Wxrld!

>>> print(a.find('lo')) # returns the position of 'lo'

3

>>> print(a.split(' ')) # split when a space ' ' occurs

['Hello', 'World!'] # Note: the output is a list!

16/27

Strings

Playing with strings . . .

>>> a = 'Hello World!'

>>> print(a.tofrench())

Bonjour tout le monde!

>>> print(a.tospanish())

Hola a todo el mundo!

>>> print(a.toitalian())

Ciao mondo!

16/27

Strings

Playing with strings . . .

>>> a = 'Hello World!'

>>> print(a.tofrench())

Bonjour tout le monde!

>>> print(a.tospanish())

Hola a todo el mundo!

>>> print(a.toitalian())

Ciao mondo!

Just kidding, these functions do not exist! :-P

16/27

Control of �ow

In accordance with its philosophy, Python does not have many

statements to control the �ux of the instructions. There are,

basically, three statements:

if-elif-else, while, and for

• https://docs.python.org/3/tutorial/controlflow.html

17/27

https://docs.python.org/3/tutorial/controlflow.html

The if statement

basic if

>>> if a == b:

... print('a is equal to b')

... else:

... print('a is not equal to b')

...

Note 1

We can combine conditions (e.g.,

((a >= 5) and (a <= 10)))

�advanced� if

>>> if a < 5:

... print('a is less than five')

... elif a == 5:

... print('a is equal to five')

... else:

... print('a is more than five')

...

Note 2

Contrary to C, Python does not

have a switch statement.

(less operators = better!)

18/27

The while loop

The while statement is a loop with a condition

>>> i = 0

>>> mycheck = True

>>> while mycheck: # runs until True

... print('i = ', i)

... i += 1

... if i > 5:

... mycheck = False

...

i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

Note

If not handled carefully,

while loops can become

endless!

19/27

The for loop

C

1 #include <stdio.h>

2

3 int i;

4

5 int main()

6 {

7 for(i=0; i<10; i++)

8 {

9 printf("i = %d\n", i);

10 }

11

12 return 0;

13 }

Python

1 >>> for i in range(10):

2 ... print('i = ', i)

3 ...

20/27

The for loop

The range function

The function range returns a so-called iterator.

range(start, stop, step)

It produces a sequence of integers from start (included) to stop

(excluded) spaced of step.

Hands-on

>>> print([i for i in range(5)])

[0, 1, 2, 3, 4]

>>> print([i for i in range(0,15,3)])

[0, 3, 6, 9, 12]

>>> print([i for i in range(100,0,-20)])

[100, 80, 60, 40, 20]
20/27

The for loop

Note

In reality, the for statement in Python is much more �powerful�

than its C counterpart!

In fact, the for statement allows to iterate over any iterable object.

20/27

The for loop

C

#include <stdio.h>

int i;

int vals[] = {10,15,20,25};

int main()

{

for(i=0; i<4; i++)

{

/* do something with array */

printf("val[%d] = %d\n", i, vals[i]);

}

return 0;

}

Python

>>> for i in [10,15,20,25]:

... print('i = ', i)

...

alternatively

>>> a = [10,15,20,25]

>>> for i in range(len(a)):

... print('val[',i,'] = ', a[i])

...

20/27

The for loop

Hands-on

>>> a = {'key1': 10,

... 'key2': [2., 3.5],

... 3: {'key31': None, 'key32': ('alpha', 'beta')}

... }

>>> for k in a.keys():

... print(k)

...

3

key1

key2

20/27

The break & continue

break

It forces the exit from the cycle

Hands-on

>>> for i in range(10000):

... print('i = ', i)

... if i%3 == 2:

... break

...

i = 0

i = 1

i = 2

continue

Allows to �jump� to the next

iteration

Hands-on

>>> for i in range(4):

... if i == 1:

... continue

... print('i = ', i)

...

i = 0

i = 2

i = 3

21/27

The print function

In Python 3, the print function has become much more

powerfull/�exible than before (in Python 2.7 it was a statement)!

print(*objects, sep=' ', end='\n', file=sys.stdout, flush=False)

Examples

>>> a = ['This', 'is', 'a', 'sentence']

>>> print(*a) # the *a "expands" the content of a

This is a sentence

>>> # we can change the separator between the elements of a

>>> print(*a, sep=' *.* ')

This *.* is *.* a *.* sentence

>>> # we can define what is appended at end of the print

>>> print(*a, sep=' *.* ', end='\nEND\nCIAO CIAO!\n')

This *.* is *.* a *.* sentence

END

CIAO CIAO!

• https://docs.python.org/3/library/functions.html#print

22/27

https://docs.python.org/3/library/functions.html#print

The print function

Question

How can we format the output of the print?

22/27

The print function

Examples

>>> val1 = 35.866

>>> val2 = 22.0

>>> # formatting a string

>>> s = 'val1 = {:.2f} while val2 = {:.0f}'.format(val1, val2)

>>> print(s)

>>>

>>> # using str format directly inside print

>>> print('val1 = {:.2f} while val2 = {:.0f}'.format(val1, val2))

>>>

>>> # using string literals (or f-strings) (only for Python > 3.6.x)

>>> print(f'val1 = {val1:.2f} while val2 = {val2:1}')

>>>

>>> # The "old" way

>>> print('val1 = %.2f while val2 = %d' % (val1, val2))

They all produce the same output!

val1 = 35.87 while val2 = 22

• https://docs.python.org/3/tutorial/inputoutput.html

22/27

https://docs.python.org/3/tutorial/inputoutput.html

Hands-on Session

Exercise 1

Tasks

1. Compute the product between the following matrices

A =

 0 1 −5
3 10 2

−1 1 0

 B =

7 3 −4
1 0 −1
5 2 −5

 ,

and print it on screen.

2. Generate lists of 5, 10, 20, 50, 100, 1000, 50000, 1000000,

and 10000000 random numbers in the [0, 1) interval, compute

their averages and standard deviations, and print their

evolution with respect to the size of the sample (with a

precision of 5 and 8 decimals, respectively).

23/27

Exercise 1

Random numbers

To generate random numbers in

the [0, 1) interval, we can use the

following code

load the random module

(do only once)

import random as rnd

extract a random number

r = rnd.random()

Square root

The square root function is

available through the math

module

import math

compute the square root

mysqrt = math.sqrt()

Tip

There are ways to compute the standard deviation without the need

to store all the values. See: https://en.wikipedia.org/wiki/

Standard_deviation#Rapid_calculation_methods
23/27

https://en.wikipedia.org/wiki/Standard_deviation#Rapid_calculation_methods
https://en.wikipedia.org/wiki/Standard_deviation#Rapid_calculation_methods

Exercise 2

Tasks

After loading Martin Scorsese's �lmography from �le, arrange the

information into a dictionary and answer to the following questions:

1. How many movies has he directed?

2. What is the time span of Scorsese's career?

3. What is the title of his oldest movie?

4. How many movies he has also produced?

5. How many movies he has produced and written?

Print the answers on screen all at once!

24/27

Exercise 2

Load the input �le

dirin = '<relative path to the file>'

fnamein = 'scorsese_filmography.txt'

fnamein = dirin+fnamein

with open(fnamein) as fin:

next(fin) # skipping the first row

for line in fin:

splitting each line into

a list of strings

mystr = line.split(";")

Transfer the content of mystr

into variables

maximum & minimum

a = [1,2,3]

mymax = max(a)

mymin = min(a)

Caution

The lines of the �le are

parsed as strings! You

have to convert them (e.g.,

using the int() function).

24/27

Bibliography i

Homepage of the Python programming language. Available at:

https://www.python.org/

HTML.it, Guida al linguaggio Python. Available at:

https://www.html.it/guide/guida-python/

Python PEP-8 directive. Available at:

https://www.python.org/dev/peps/pep-0008/

Homepage of the Stackover�ow website. Available at:

https://stackoverflow.com/

Python 3 documentation. Available at:

https://docs.python.org/3/

25/27

https://www.python.org/
https://www.html.it/guide/guida-python/
https://www.python.org/dev/peps/pep-0008/
https://stackoverflow.com/
https://docs.python.org/3/

Bibliography ii

Python 3 documentation, Data structures. Available at:

https://docs.python.org/3/tutorial/datastructures.html

Associative array. Available at:

https://en.wikipedia.org/wiki/Associative_array

Python 3 documentation, Control of �ow. Available at:

https://docs.python.org/3/tutorial/controlflow.html

Python 3 documentation, The print function. Available at:

https://docs.python.org/3/library/functions.html#print

Python 3 documentation, Output format. Available at:

https://docs.python.org/3/tutorial/inputoutput.html

26/27

https://docs.python.org/3/tutorial/datastructures.html
https://en.wikipedia.org/wiki/Associative_array
https://docs.python.org/3/tutorial/controlflow.html
https://docs.python.org/3/library/functions.html#print
https://docs.python.org/3/tutorial/inputoutput.html

Bibliography iii

Wikipedia, Rapid calculation method for standard deviation.

Available at: https://en.wikipedia.org/wiki/Standard_

deviation#Rapid_calculation_methods

Martin Scorsese's �lmography. Available at: https:

//en.wikipedia.org/wiki/Martin_Scorsese_filmography

27/27

https://en.wikipedia.org/wiki/Standard_deviation#Rapid_calculation_methods
https://en.wikipedia.org/wiki/Standard_deviation#Rapid_calculation_methods
https://en.wikipedia.org/wiki/Martin_Scorsese_filmography
https://en.wikipedia.org/wiki/Martin_Scorsese_filmography

	Foreword
	History & Philosophy of Python
	Basics of Python
	Hands-on Session

