
Lesson 2: Second steps with Python and

the NumPy module

Alessio Cardillo

Department of computer science and mathematics (DΣIM),

Universitat Rovira i Virgili, Tarragona, Spain

Python Days

Dept. of physics and astronomy � University of Catania, Catania, Italy



Foreword



Outline of the course/lesson

Course

1. Introduction to the basics of the Python language.

2. More �basics� of Python & basics of NumPy.

3. IPython notebook & Visualization of data (Matplotlib).

4. Data analysis (Pandas).

1/20



Outline of the course/lesson

Course

1. Introduction to the basics of the Python language.

2. More �basics� of Python & basics of NumPy.

3. IPython notebook & Visualization of data (Matplotlib).

4. Data analysis (Pandas).

Lesson 2

� Manipulating lists

� File input/output, JSON, functions, & handling errors

� Running third party software in Python

� The NumPy module

� Hands-on session

1/20



Manipulating lists



List slicing/comprehension

� By list slicing we refer to a way of

extracting (and eventually copying)

subsets (slices) of list objects (and

other ordered iterables).

� Slicing is based on three stride

indicators (even not all together).

� Slicing can be done both forward and

backward.

� Note: When we do assignment

through slicing the size of the two

objects must be THE SAME.

2/20



List slicing/comprehension

� By list slicing we refer to a way of

extracting (and eventually copying)

subsets (slices) of list objects (and

other ordered iterables).

� Slicing is based on three stride

indicators (even not all together).

� Slicing can be done both forward and

backward.

� Note: When we do assignment

through slicing the size of the two

objects must be THE SAME.

A[x:y:z]

start step
stop

(not included)

Hands-on
>>> # defining a list

>>> a = list(range(10))

>>> a

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> # setting a new list (slicing)

>>> b = a[2:6:2]

>>> b

[2, 4]

2/20



List slicing/comprehension

� By list slicing we refer to a way of

extracting (and eventually copying)

subsets (slices) of list objects (and

other ordered iterables).

� Slicing is based on three stride

indicators (even not all together).

� Slicing can be done both forward and

backward.

� Note: When we do assignment

through slicing the size of the two

objects must be THE SAME.

Hands-on
>>> # defining a list

>>> a = list(range(10))

>>> a

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> # striding forward

>>> b = a[2:7:2]

>>> b

[2, 4, 6]

>>> # striding backward

>>> c = a[7:2:-2]

>>> c

[7, 5, 3]

2/20



List slicing/comprehension

� By list slicing we refer to a way of

extracting (and eventually copying)

subsets (slices) of list objects (and

other ordered iterables).

� Slicing is based on three stride

indicators (even not all together).

� Slicing can be done both forward and

backward.

� Note: When we do assignment

through slicing the size of the two

objects must be THE SAME.

Hands-on
>>> a = list(range(10))

>>> b = list(range(5))

>>> a[2:6:2] = b[1:3:2]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ValueError: attempt to assign sequence

of size 1 to extended slice of size 2

2/20



List slicing/comprehension

By list comprehension we

indicate any �compact

way� to perform complex

operations on lists.

Hands-on
>>> l = range(10)

>>> # list comprehension

>>> a = [x for x in l]

>>> a

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> # a more sophisticated one

>>> b = [x**2 for x in l]

>>> b

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

>>> # you can nest multiple instances

>>> c = [[x**i for x in l[2:5]] for i in range(3)]

>>> c

[[1, 1, 1], [2, 3, 4], [4, 9, 16]]

2/20



File input/output, JSON,

Functions, & Handling errors



Input: command line arguments

Getting input from stdin

� The simplest way to pass variables

to a Python script via the standard

input (stdin) involves the

sys.argv variable. More

sophisticated ways involve parsing

command line options (for instance

via the getopt or the argparse

modules).

� The sys.argv variable (available

through the sys module) works

exactly as its homologous in C

(e.g., sys.argv[0] is the name of

the program).

Hands-on
# basic usage of the sys.argv method

import sys

print('Nr. of args:', len(sys.argv))

print('Args List:', str(sys.argv))

Then, run the script as:

$ python3 myscript.py var1 3.5 True

Note

REMEMBER: Python parses

arguments as strings. Hence, you

need to convert them to the

appropriate type!

• Check the bibliography for references.
3/20



Read/Write from/to �le

Input �le (example-read-io.txt)

This file has 3 lines

This is the second line

This is the third line

Reading from �le
>>> # opening the file object

>>> f = open('hands-on/example-read-io.txt', 'r')

>>> # reading the WHOLE file

>>> f.read()

'This file has 3 lines\nThis is the second line\nThis is the third line\n'

>>> # closing the file object

>>> f.close()

Opening modes

Code Mode

'r' read only

'w' write (over)

'a' append

'r+' read and write

Tip

Be very careful with the .read() method because it reads the

WHOLE �le at once!

4/20



Read/Write from/to �le

Python
>>> # opening the file inside a with statement

>>> with open('hands-on/example-read-io.txt', 'r') as f:

... f.read()

>>> # reading one row at a time

>>> with open('hands-on/example-read-io.txt', 'r') as f:

... for line in f:

... print(line, end='')

...

This file has 3 lines

This is the second line

This is the third line

>>> # reading skipping the first two rows

>>> with open('hands-on/example-read-io.txt', 'r') as f:

... for _ in range(2):

... a = next(f)

... for line in f:

... print(line, end='')

...

This is the third line

C
#include <stdio.h>

int main() {

FILE *f;

char buff[255];

f = fopen("example-read-io.txt", "r");

fscanf(f, "%s", buff);

printf("%s\n", buff);

fgets(buff, 255, (FILE*)f);

printf("%s\n", buff );

fclose(f);

return 0;

}

• https://docs.python.org/3/tutorial/inputoutput.html#reading-and-writing-files

• https://docs.python.org/3/reference/compound_stmts.html#with
4/20

https://docs.python.org/3/tutorial/inputoutput.html#reading-and-writing-files
https://docs.python.org/3/reference/compound_stmts.html#with


Read/Write from/to �le

Writing to �le
>>> # declaring a matrix

>>> mydata = [[1,2,3],[4,5,6],[7,8,9]]

>>> # opening a file and writing on it

>>> with open('hands-on/example-write-io.txt', 'w') as f:

... for row in mydata:

... for col in row:

... f.write("%d\t" % col)

... f.write("\n")

...

4/20



Read/Write from/to �le

Good to know

Two very handy modules are

the tarfile and the zipfile.

The former makes it possible

to read and write tar archives,

including those using gzip, bz2,

and lzma compression.

The latter, instead, can be

used to read/write .zip �les.

Hands-on
>>> import tarfile

>>>

>>> # loading the tarfile

>>> fname = 'tarfile-example.tar.gz'

>>> mytar = tarfile.open('hands-on/'+fname, 'r:gz')

>>>

>>> print('Printing the content of the tarfile %s \n' % fname)

>>>

>>> # iterating over the files in the tarfile

>>> for members in mytar.getmembers():

... print(members)

...

Printing the content of the tarfile tarfile-example.tar.gz

<TarInfo 'archive-1.dat' at 0x7ff6a40ee818>

<TarInfo 'archive-2.dat' at 0x7ff6a40ee688>

<TarInfo 'archive-3.dat' at 0x7ff6a40ee750>

• https://docs.python.org/3/library/tarfile.html

• https://docs.python.org/3/library/zipfile.html 4/20

https://docs.python.org/3/library/tarfile.html
https://docs.python.org/3/library/zipfile.html


The JSON format

What is a JSON?

JSON (JavaScript Object Notation) is a data-interchange format

easy for humans to read/write, and for machines to parse/generate.

It is completely language independent (ideal for data-interchange),

but uses conventions that are familiar to programmers of the

C-family of languages (e.g., C, C++, C#, Java, JavaScript, Perl),

and OF COURSE Python.

• https://www.json.org/json-en.html

5/20

https://www.json.org/json-en.html


The JSON format

A JSON is based on two structures

object A collection of name/value pairs

(i.e., an associative array).

array An ordered list of values.

5/20



The JSON format

A JSON is based on two structures

object A collection of name/value pairs

(i.e., an associative array).

array An ordered list of values.

Question

What are the Python equivalents of the object and the array?

5/20



The JSON format

Example of a JSON

myjson = {

'key1': 0.358,

'key2': [1, 3, 5],

'key3': True,

'key4': {

'key41': 'mystring',

'key42': [[3.5, 'string'], [-7.5, 3]]

}

}

Note

JSON does not support comments!

5/20



The JSON format

The json module

import json

# loading a json from file

with open('data.txt', 'r') as infile:

myjson = json.load(infile)

print(myjson)

# printing a json to file

myjson = {'a': True, 'b': False}

with open('test_file-dump.json', 'w') as outfile:

json.dump(myjson, outfile)

# pretty printing

with open('test_file-dump.json', 'w') as outfile:

json.dump(myjson, outfile, indent=4)

• https://docs.python.org/3/library/json.html 5/20

https://docs.python.org/3/library/json.html


Functions/modules

Functions are declared

using the keyword def.

There is no need to declare

the type of the function or

of its arguments (duck

typing). All functions

must return something.

By default, the return of a

function is None.

Hands-on
>>> # define universal sum

>>> def mysum(v1, v2):

... return v1+v2

...

>>> mysum(3,5)

8

>>> mysum('Hello',' World!')

'Hello World!'

>>> mysum([1,3,5],['a','b','c'])

[1, 3, 5, 'a', 'b', 'c']

• https://docs.python.org/3/glossary.html#term-function

6/20

https://docs.python.org/3/glossary.html#term-function


Functions/modules

Functions are declared

using the keyword def.

There is no need to declare

the type of the function or

of its arguments (duck

typing). All functions

must return something.

By default, the return of a

function is None.

Hands-on

>>> # factorial

>>> def factorial(n):

... if n < 2:

... return 1

... else:

... return n*factorial(n-1)

...

>>> for i in [1, 3, 5, 10, 40]:

... print('fact(%d) = %d' %(i, factorial(i)))

...

fact(1) = 1

fact(3) = 6

fact(5) = 120

fact(10) = 3628800

fact(40) = 815915283247897734345611269596115894272000000000

• https://docs.python.org/3/glossary.html#term-function

6/20

https://docs.python.org/3/glossary.html#term-function


Functions/modules

Parameters can be passed

either by position or by

name (reference).

Parameters might have

default values. We can

also write functions with

an arbitrary number of

parameters.

Hands-on

>>> # define a function

>>> def mysum(v1, v2):

... return v1+v2

...

>>> # pass by position & name

>>> mysum(1,v2=6)

7

>>> # pass only by name (notice the order)

>>> mysum(v2=6,v1=2)

8

• https://stackoverflow.com/questions/986006/how-do-i-pass-a-variable-by-reference

6/20

https://stackoverflow.com/questions/986006/how-do-i-pass-a-variable-by-reference


Functions/modules

Parameters can be passed

either by position or by

name (reference).

Parameters might have

default values. We can

also write functions with

an arbitrary number of

parameters.

Hands-on

>>> # setting default value

>>> def mysum(v1, v2=5):

... return v1+v2

...

>>> # passing only v1

>>> mysum(2)

7

>>> # passing v1 and v2

>>> mysum(2, 7)

9

>>> # passing v1 by name

>>> mysum(v1=2, 7)

File "<stdin>", line 1

SyntaxError: positional argument follows

keyword argument

• https://stackoverflow.com/questions/986006/how-do-i-pass-a-variable-by-reference

6/20

https://stackoverflow.com/questions/986006/how-do-i-pass-a-variable-by-reference


Functions/modules

Parameters can be passed

either by position or by

name (reference).

Parameters might have

default values. We can

also write functions with

an arbitrary number of

parameters.

Hands-on

>>> # defining a function

>>> def mysum(v1, *args):

... for elem in args:

... v1 += elem

... return v1

...

>>> mysum(1,3)

4

>>> # declaring a list l

>>> l = [1,2,3]

>>> # passing the content of l to the function

>>> mysum(1,*l)

7

• https://stackoverflow.com/questions/986006/how-do-i-pass-a-variable-by-reference

6/20

https://stackoverflow.com/questions/986006/how-do-i-pass-a-variable-by-reference


Functions/modules

Parameters can be passed

either by position or by

name (reference).

Parameters might have

default values. We can

also write functions with

an arbitrary number of

parameters.

Hands-on

>>> # function with arbitrary nr. of parameters

>>> def myfunc(a, **kwargs):

... print(a)

... print(kwargs)

... return None # optional

...

>>> # passing parameters by name

>>> myfunc(5, x=1, y=2)

5

{'x': 1, 'y': 2}

>>> # passing parameters as dictionary

>>> c = {'x':1, 'y': 'Hello'}

>>> myfunc(5, **c)

5

{'x': 1, 'y': 'Hello'}

>>> # ERROR multiple definition

>>> c = {'x':1, 'a': 'Hello'}

>>> myfunc(5, **c)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: myfunc() got multiple values for argument 'a'

• https://stackoverflow.com/questions/986006/how-do-i-pass-a-variable-by-reference

6/20

https://stackoverflow.com/questions/986006/how-do-i-pass-a-variable-by-reference


Functions/modules

We can associate to each

function a doc string

explaining what the

function does. We can

access the doc string via

the command

myfunc.__doc__ or by

help(myfunc). It is

usually delimited with

""" """ .

Hands-on

>>> def mysum(v1, v2):

... """This function computes the sum between

... two elements of arbitrary type."""

... return v1 + v2

...

>>> print(mysum.__doc__)

This function computes the sum between

two elements of arbitrary type.

>>> help(mysum)

• https://www.python.org/dev/peps/pep-0257/

6/20

https://www.python.org/dev/peps/pep-0257/


Handling errors

� Error handling, despite being a complex task, ensures the

functionality of code.

� Older and modern languages handle errors in completely

di�erent ways.

� A modern error handling system should have these

characteristics:

1. Low impact on performances (if errors do not occur).

2. Small overhead on the code.

3. Possibility to handle the error in an automated way.

7/20



Handling errors

Let's look at �typical� error occurring

in scienti�c computing:

the zero division error!

x

0
=∞

7/20



Handling errors

C

#include <stdio.h>

#include <stdlib.h>

main() {

int dividend = 20;

int divisor = 0;

int quotient;

if( divisor == 0){

fprintf(stderr, "Division by zero! Exiting...\n");

exit(-1);

}

quotient = dividend / divisor;

fprintf(stderr, "Value of quotient : %d\n", quotient );

exit(0);

}
7/20



Handling errors

Python

>>> num = 10.

>>> denom = 0.

>>>

>>> try:

... print('division = %.2f' %(num/denom))

... except ZeroDivisionError:

... print('You cannot divide by zero!')

...

� We can handle the error by

placing the code inside a

so-called try/except block.

� We can catch either speci�c

classes of errors or all of

them.

7/20



Handling errors

Hands-on
try:

... # tries to execute the code here

...

except Exc0: # captures exceptions of type Exc0

... # do something in case Exc0 occurs

...

except (Exc0, Exc1): # captures exceptions of type Exc0 or Exc1

... # do something in case Exc0 or Exc1 occurs

...

except: # captures EVERY type of exceptions

... # do something in case an exception occurs

...

else: # what should be done in case no exception occurs

... # do something in case of no exception

...

finally: # what must be done regardless of what happens

... # execute this code ALWAYS

...

Note

We can generate an error/exception using the command raise.

• https://docs.python.org/3/library/exceptions.html 7/20

https://docs.python.org/3/library/exceptions.html


Running third party software



Running external software in Python

It is possible to launch/run �external code� from a Python script.

There are two distinct way of doing it:

8/20



Running external software in Python

It is possible to launch/run �external code� from a Python script.

There are two distinct way of doing it:

1. Calling directly functions (e.g., of a shared C library) in the

code.

2. Running externally the code (e.g., a bash script).

8/20



Running external software in Python

It is possible to launch/run �external code� from a Python script.

There are two distinct way of doing it:

1. Calling directly functions (e.g., of a shared C library) in the

code.

2. Running externally the code (e.g., a bash script).

8/20



Running external software in Python

Extension modules

Such modules can do two things that can't be done directly in

Python: they can implement new built-in object types, and they

can call C library functions and system calls.

the ctypes module

It provides C compatible data types, and allows calling functions in

DLLs or shared libraries. It can be used to wrap these libraries in

pure Python.

• https://docs.python.org/3/extending/extending.html

• https://docs.python.org/3/library/ctypes.html#module-ctypes

8/20

https://docs.python.org/3/extending/extending.html
https://docs.python.org/3/library/ctypes.html#module-ctypes


Running external software in Python

Running external code through Python

Let's suppose that we need to interact directly with the operative

system, or that we have an old, but well-working, bash script that

automatically backups all our important �les/directories. How can

we do such operations through Python?

Answer

We can use either the os module, or the subprocess one!

• https://stackabuse.com/executing-shell-commands-with-python/

8/20

https://stackabuse.com/executing-shell-commands-with-python/


Running external software in Python

Our bash script: myscript-bash.sh

#!/bin/bash

echo -e "HELLO! I AM A BASH SCRIPT\n"

echo -e "THE VALUE INSERTED IS: $1\n\n"

echo -e "IN THIS DIRECTORY WE HAVE THE FOLLOWING FILES:\n"

ls -lght

# end of script

alessio@aleurv:~/corso-python-dfa/lectures/lect2/hands-on$ bash myscript-bash.sh 7

HELLO! I AM A BASH SCRIPT

THE VALUE INSERTED IS: 7

IN THIS DIRECTORY WE HAVE THE FOLLOWING FILES:

total 4,0K

-rw-rw-r-- 1 alessio 176 nov 12 15:47 myscript-bash.sh

8/20



Running external software in Python

Using the os module
import os

os.system("bash hands-on/myscript-bash.sh 7")

HELLO! I AM A BASH SCRIPT

THE VALUE INSERTED IS: 7

IN THIS DIRECTORY WE HAVE THE FOLLOWING FILES:

total 572K

-rw-r--r-- 1 alessio 12K nov 12 16:26 lecture-2.tex

-rw-r--r-- 1 alessio 65K nov 12 16:24 lecture-2.log

-rw-r--r-- 1 alessio 439K nov 12 16:24 lecture-2.pdf

-rw-r--r-- 1 alessio 3,7K nov 12 16:24 lecture-2.nav

-rw-r--r-- 1 alessio 463 nov 12 16:24 lecture-2.toc

-rw-r--r-- 1 alessio 426 nov 12 16:24 lecture-2.out

-rw-r--r-- 1 alessio 9,6K nov 12 16:24 lecture-2.aux

drwxr-xr-x 2 alessio 20K nov 12 16:24 _minted-lecture-2

-rw-r--r-- 1 alessio 0 nov 12 16:24 lecture-2.snm

-rw-r--r-- 1 alessio 40 nov 12 16:24 lecture-2.vrb

drwxrwxr-x 2 alessio 4,0K nov 12 16:15 hands-on

0
8/20



Running external software in Python

Using the os module
import os

os.system("bash hands-on/myscript-bash.sh 7")

HELLO! I AM A BASH SCRIPT

THE VALUE INSERTED IS: 7

IN THIS DIRECTORY WE HAVE THE FOLLOWING FILES:

total 572K

-rw-r--r-- 1 alessio 12K nov 12 16:26 lecture-2.tex

-rw-r--r-- 1 alessio 65K nov 12 16:24 lecture-2.log

-rw-r--r-- 1 alessio 439K nov 12 16:24 lecture-2.pdf

-rw-r--r-- 1 alessio 3,7K nov 12 16:24 lecture-2.nav

-rw-r--r-- 1 alessio 463 nov 12 16:24 lecture-2.toc

-rw-r--r-- 1 alessio 426 nov 12 16:24 lecture-2.out

-rw-r--r-- 1 alessio 9,6K nov 12 16:24 lecture-2.aux

drwxr-xr-x 2 alessio 20K nov 12 16:24 _minted-lecture-2

-rw-r--r-- 1 alessio 0 nov 12 16:24 lecture-2.snm

-rw-r--r-- 1 alessio 40 nov 12 16:24 lecture-2.vrb

drwxrwxr-x 2 alessio 4,0K nov 12 16:15 hands-on

0

Using the subprocess module
import subprocess as subproc

out_stat = subproc.run(["bash",\

"hands-on/myscript-bash.sh",\

"7"])

print("\nThe exit code was %d" % out_stat.returncode)

SAME OUTPUT AS WITH os MODULE, PLUS:

The exit code was 0

Redirect of the output
import subprocess as subproc

out_stat = subproc.run(["bash",\

"hands-on/myscript-bash.sh",\

"7"],\

stdout=subprocess.DEVNULL)

print("\nThe exit code was %d" % out_stat.returncode)

THE OUTPUT BECOMES:

The exit code was 0
8/20



The NumPy module



Numerical Python (NumPy)

What is NumPy?

� Is a Python library used for working (mainly)

with arrays.

� In Python lists serve as arrays, but they

are slow to process. A NumPy array is up to

50x faster than lists.

� NumPy arrays (unlike lists) are stored at one

continuous place in memory (locality of

reference) ⇒ very e�cient access &

manipulation.

� NumPy is written partially in Python, but

most of the parts requiring fast computation

are written in C or C++.

• https://numpy.org/ • https://numpy.org/doc/stable/index.html 9/20

https://numpy.org/
https://numpy.org/doc/stable/index.html


Numerical Python (NumPy)

What is NumPy?

� Is a Python library used for working (mainly)

with arrays.

� In Python lists serve as arrays, but they

are slow to process. A NumPy array is up to

50x faster than lists.

� NumPy arrays (unlike lists) are stored at one

continuous place in memory (locality of

reference) ⇒ very e�cient access &

manipulation.

� NumPy is written partially in Python, but

most of the parts requiring fast computation

are written in C or C++.

• https://numpy.org/ • https://numpy.org/doc/stable/index.html 9/20

https://numpy.org/
https://numpy.org/doc/stable/index.html


Numerical Python (NumPy)

What is NumPy?

� Is a Python library used for working (mainly)

with arrays.

� In Python lists serve as arrays, but they

are slow to process. A NumPy array is up to

50x faster than lists.

� NumPy arrays (unlike lists) are stored at one

continuous place in memory (locality of

reference) ⇒ very e�cient access &

manipulation.

� NumPy is written partially in Python, but

most of the parts requiring fast computation

are written in C or C++.

• https://numpy.org/ • https://numpy.org/doc/stable/index.html 9/20

https://numpy.org/
https://numpy.org/doc/stable/index.html


Numerical Python (NumPy)

What is NumPy?

� Is a Python library used for working (mainly)

with arrays.

� In Python lists serve as arrays, but they

are slow to process. A NumPy array is up to

50x faster than lists.

� NumPy arrays (unlike lists) are stored at one

continuous place in memory (locality of

reference) ⇒ very e�cient access &

manipulation.

� NumPy is written partially in Python, but

most of the parts requiring fast computation

are written in C or C++.

• https://numpy.org/ • https://numpy.org/doc/stable/index.html 9/20

https://numpy.org/
https://numpy.org/doc/stable/index.html


Numerical Python (NumPy)

• https://www.nature.com/articles/s41586-020-2649-2 9/20

https://www.nature.com/articles/s41586-020-2649-2


Numerical Python (NumPy)

• https://www.nature.com/articles/s41586-020-2649-2

9/20

https://www.nature.com/articles/s41586-020-2649-2


Arrays & Main operations

Hands-on
>>> import numpy as np

8 byte int

(4,3)

(24,8)

0 1 2 3 4 -1 6 7 10 9 10 00 1

3 4

6 7

9 10

2

-1

10

0

3 columns

4
 r

o
w

s

DATA

DATA TYPE

SHAPE

STRIDES

24 bytes

8 byte int

(4,3)

(24,8)

0 1 2 3 4 -1 6 7 10 9 10 00 1

3 4

6 7

9 10

2

-1

10

0

3 columns

4
 r

o
w

s

DATA

DATA TYPE

SHAPE

STRIDES

24 bytes

(rows,columns)

(jump row,jump col)

10/20



Arrays & Main operations

Hands-on

>>> import numpy as np

>>> # arrays must contain elements of the same type

>>> a = np.array([1, 3.4, 'test'])

>>> a

array(['1', '3.4', 'test'], dtype='<U32')

>>> a = np.array([1, 3.4, -5.+3j])

>>> a

array([ 1. +0.j, 3.4+0.j, -5. +3.j])

Note

Contrary to lists, NumPy arrays

must contain objects of the same

type!

10/20



Arrays & Main operations

Hands-on

>>> import numpy as np

>>> # setting up a list

>>> a = [1, 6, 'hello', -6.5, True]

>>> # converting to numpy array

>>> b = np.asarray(a)

>>> # printing the result

>>> a

[1, 6, 'hello', -6.5, True]

>>> type(a)

<class 'list'>

>>> b

array(['1', '6', 'hello', '-6.5', 'True'], dtype='<U21')

>>> type(b)

<class 'numpy.ndarray'>

Good to know

It is possible to convert a list into a

NumPy array using the method

.asarray(). It is also possible to

convert a NumPy array to a list

using the method .tolist() (or,

equivalently, list()).

10/20



Arrays & Main operations

Slicing & masking

Slicing works like for lists, but we

can apply it to multiple

dimensions.

a[:2,::2]

a[:,1]

a[2:,2:]

0 1

3 4

6 7

9 10

2 3

-1 0

10 9

0 4

10/20



Arrays & Main operations

Slicing & masking

>>> # creating a 4x4 matrix

>>> a = np.array([[0,1,2,3],[3,4,-1,0],\

... [6,7,10,9],[9,10,0,4]])

>>> a

array([[ 0, 1, 2, 3],

[ 3, 4, -1, 0],

[ 6, 7, 10, 9],

[ 9, 10, 0, 4]])

>>> # returning only elements > 5

>>> a[a>5]

array([ 6, 7, 10, 9, 9, 10])

a[a>5]

0 1

3 4

6 7

9 10

2 3

-1 0

10 9

0 4

10/20



Arrays & Main operations

Vectorization
>>> a = np.array([[0,1],[3,4],[6,7],[9,10]])

>>> b = np.array([[1,1],[1,1],[1,1],[1,1]])

>>> c = a + b

>>> c

array([[ 1, 2],

[ 4, 5],

[ 7, 8],

[10, 11]])

0 1

3 4

6 7

9 10

1 1

1 1

1 1

1 1

+

1 2

4 5

7 8

10 11

1 2

4 5

7 8

10 11

=

0 1

3 4

6 7

9 10

1 1

1 1

1 1

1 1

+ =

10/20



Arrays & Main operations

Broadcasting
>>> # to have a column vector

>>> # I have to set it in this way

>>> a = np.array([[0],[3],[6],[9]])

>>> b = np.array([0,1])

>>> c = a * b

>>> c

array([[0, 0],

[0, 3],

[0, 6],

[0, 9]])

Note

There are more pythonic ways to
transpose a row array into a
column one. For instance:
>>> a = np.array([0,3,6,9])

>>> a = a[:, np.newaxis]

array([[0],

[3],

[6],

[9]])

0

3

6

9

0 1 0 0

0 3

0 6

0 9

x =

10/20



Arrays & Main operations

Reduction
>>> # define a matrix

>>> a = np.array([[0,1,2,3],[3,4,-1,0],\

... [6,7,10,9],[9,10,0,4]])

>>> a

array([[ 0, 1, 2, 3],

[ 3, 4, -1, 0],

[ 6, 7, 10, 9],

[ 9, 10, 0, 4]])

>>> # sum over axis 0

>>> s1 = a.sum(axis=0)

>>> # sum over axis 1

>>> s2 = a.sum(axis=1)

>>> # sum over axis 0 first and 1 then

>>> s3 = a.sum()

>>> # displaying results

>>> s1

array([18, 22, 11, 16])

>>> s2

array([ 6, 6, 32, 23])

>>> s3

67

6

6

32

23

16112218 67

0 1

3 4

6 7

9 10

2 3

-1 0

10 9

0 4

sum(axis=1)

sum(axis=0)

sum
( )

axis 1

a
x
is

 0

10/20



Arrays & Main operations

Evaluating mathematical expressions with NumPy is quite easy!

Mean square error

〈ε2〉 =
1

N

N∑
i=1

(Xi
? − Xi )

2

N → Number of measures.

X ? → Expected value.

X → Measure.

10/20



Arrays & Main operations

C
#include <stdlib.h>

#include <stdio.h>

float myexpt[4] = {1., 3.5, -6., 0.4};

float myvals[4] = {1.05, 2.8, -4., -0.3};

float dummy, v1, v2, avg_sq_err;

int N = sizeof(myexpt)/sizeof(float); // 4

int i;

int main(){

dummy = 0.;

for(i=0; i<N; i++)

{

v1 = myexpt[i];

v2 = myvals[i];

dummy += (v1-v2)*(v1-v2);

}

avg_sq_err = (1./((float) N))*dummy;

printf("expect \t measures\n");

for(i=0; i<N; i++)

{

printf("%.2f\t%.2f\n", myexpt[i], myvals[i]);

}

printf("mean quadratic error = %.4f\n", avg_sq_err);

return 0;

}

10/20



Arrays & Main operations

Python

1 myexpt = [1., 3.5, -6., 0.4]

2 myvals = [1.05, 2.8, -4., -0.3]

3

4 N = len(myexpt)

5

6 dummy = 0.

7

8 for i in range(N):

9 v1 = myexpt[i]

10 v2 = myvals[i]

11 dummy += (v1-v2)*(v1-v2)

12

13 avg_sq_err = (1./N)*dummy

14

15 print('expectations = ', myexpt)

16 print('measures = ', myvals)

17 print('mean quadratic error = %.4f'\

18 % avg_sq_err)

NumPy
1 import numpy as np

2

3 myexpt = np.array([1., 3.5, -6., 0.4])

4 myvals = np.array([1.05, 2.8, -4., -0.3])

5

6 N = np.shape(myexpt)[0]

7

8 avg_sq_err = ((1./N)

9 * np.sum(np.square(myexpt-myvals)))

10

11 print('expectations = ', myexpt)

12 print('measures = ', myvals)

13 print('mean quadratic error = %.4f'\

14 % avg_sq_err)

10/20



Useful NumPy's functions

Cheat Sheets

Together with the course materials, there are also the cheat sheets

for NumPy and SciPy.

11/20



Useful NumPy's functions

shape & reshape

>>> import numpy as np

>>> # find the shape of an array

>>> a = np.array([[1,2,3],[4,5,6]])

>>> a.shape

(2, 3)

>>> np.shape(a)

(2, 3)

>>> # reshape of an array

>>> a = np.array([1,2,3,4,5,6])

>>> a.reshape(2,3)

array([[1, 2, 3],

[4, 5, 6]])

11/20



Useful NumPy's functions

zeros & ones

>>> import numpy as np

>>> # create an array full of zeros

>>> a = np.zeros(5)

>>> a

array([0., 0., 0., 0., 0.])

>>> # create an array full of ones

>>> a = np.ones(5)

>>> a

array([1., 1., 1., 1., 1.])

Note

There are two functions called zeros_like() and ones_like()

which generate arrays of zeros and ones with a shape identical to

another array (e.g., (3,4)).

11/20



Useful NumPy's functions

arange & linspace

Both return sequences of evenly spaced numbers, but they are not
the same thing.
>>> import numpy as np

>>> # arange(start, stop, step)

>>> # (stop not included)

>>> a = np.arange(0,10,2)

>>> a

array([0, 2, 4, 6, 8])

>>> # linspace(start, stop, nrpoints)

>>> # (stop is included)

>>> a = np.linspace(0,10,2)

>>> a

array([ 0., 10.])

Note

There exist two logarithmic counterparts of linspace() called

logspace() and geomspace().

11/20



Useful NumPy's functions

mean, std, & var
>>> import numpy as np

>>> # generate an array of size 10 filled of random numbers in [0,1)

>>> a = np.random.random(10)

>>> a

array([0.82191943, 0.8119978 , 0.93116978, 0.74907317, 0.35424478,

0.41143222, 0.1770835 , 0.98988076, 0.30800019, 0.37610524])

>>> # arithmetic mean

>>> np.mean(a)

0.593090686506173

>>> # standard deviation

>>> np.std(a)

0.28068161984733503

>>> # variance

>>> np.var(a)

0.0787821717201239

Note

There exist similar functions to account for the presence of NaN

values called nanmean(), nanstd(), and nanvar().

11/20



Useful NumPy's functions

histogram
>>> import numpy as np

>>> # generate a histogram with three bins

>>> np.histogram([1, 2, 1], bins=[0, 1, 2, 3])

(array([0, 2, 1]), array([0, 1, 2, 3]))

>>> # you can feed multiple arrays to the histogram

>>> np.histogram([[1, 2, 1], [1, 0, 1]], bins=[0,1,2,3])

(array([1, 4, 1]), array([0, 1, 2, 3]))

>>> # compute a "kernel density estimator" (KDE)

>>> hist, bin_edges = np.histogram(np.random.randint(0,4,size=100), bins=np.linspace(0,4,10),\

... density=True)

>>> hist

array([0.585 , 0. , 0.4725, 0. , 0.63 , 0. , 0.5625, 0. , 0. ])

>>> bin_edges

array([0. , 0.44444444, 0.88888889, 1.33333333, 1.77777778,

2.22222222, 2.66666667, 3.11111111, 3.55555556, 4. ])

>>> hist.sum()

2.25

>>> # computing the "area under the curve"

>>> np.sum(hist * np.diff(bin_edges))

1.0

Warning

In previous versions of the NumPy (< 1.6), the normed histogram did not compute

well the probability density. Remember: ALWAYS BENCHMARK THE CODE! 11/20



Useful NumPy's functions

savetxt
>>> a = np.array([[1,2,3,5],[2,4,10,1],\

... [0,30,5,-1],[16,8,20,20]])

>>> np.savetxt('hands-on/ex_np_savetxt.dat',

... a, fmt='%.1f', delimiter=';')

alessio@aleurv:$ less ex_np_savetxt.dat

1.0;2.0;3.0;5.0

2.0;4.0;10.0;1.0

0.0;30.0;5.0;-1.0

16.0;8.0;20.0;20.0

loadtxt
>>> b = np.loadtxt('hands-on/ex_np_savetxt.dat',

... delimiter=';', usecols=(1,3))

>>> b

array([[ 2., 5.],

[ 4., 1.],

[30., -1.],

[ 8., 20.]])

Good to know

The loadtxt() function is quite versatile as it allows to de�ne

comments, delimiters, rows to skip, and columns to use.

Similarly, the savetxt() function allows to de�ne also formats,

headers, and footers.

11/20



Hands-on Session



Exercise 1

Task

1. Compute
∫ b
a α sin(x) e−βx dx using the

Monte Carlo method.

I =

∫ b

a
g(x) dx ' 〈IN〉 .

Being

〈IN〉 ≡
1

N

N∑
i=1

Ii =
1

N

[
(b − a)

N∑
i=1

g(xi )
]
,

with xi a random number in the [a, b] range.

2. Print the solution and its accuracy (in absolute value and in

%) as a function of the size of the sample, N.

3. Parameters' values: a = 0, b = 2π, α = 2.5, β = 1, and

N ∈ {10, 100, 1000, 10000, 100000, 1000000, 10000000}.
12/20



Exercise 1

Random numbers in [a, b] range

Use the function

numpy.random.uniform().

Compute the exact solution
from scipy import integrate

val, err = integrate.quad(myfunc, val_a, val_b)

Tips

� Leverage the power of NumPy

arrays!

� Use a function to de�ne the

integrand.

� NumPy has built-in sin(x)

(numpy.sin()) and exp(x)

(numpy.exp()) functions as

well as the π constant

(numpy.pi).

• https://towardsdatascience.com/monte-carlo-integration-in-python-a71a209d277e

• http://people.duke.edu/~ccc14/sta-663-2016/15C_MonteCarloIntegration.html

12/20

https://towardsdatascience.com/monte-carlo-integration-in-python-a71a209d277e
http://people.duke.edu/~ccc14/sta-663-2016/15C_MonteCarloIntegration.html


Exercise 2

Task

1. Compute the Shannon entropy, S , of a text using the

following relation:

S = − 1

log2NW

NW∑
i=1

pi log2 pi .

Where NW is the number of distinct words in the text. The

probability of extracting word i uniformly at random from the

text, pi is equal to:

pi =
Ni

LTOT
,

with Ni the number of occurrences of word i and LTOT the

total length of the text.

• https://en.wikipedia.org/wiki/Entropy_(information_theory)

13/20

https://en.wikipedia.org/wiki/Entropy_(information_theory)


Exercise 2

Task (continuing)

2. For a given text, compute the following quantities:

� The number of distinct words, NW .

� The total length of the text, LTOT.

� The entropy of the text, S .

� The number of times each word appears (stored as a

dictionary).

� The lists of the top 5% most frequent and least frequent words

(two distinct lists).

3. Print the results on screen and store them in a JSON �le.

4. Repeat points 1-3 for all the text �les available.

13/20



Exercise 2

Tips

� Use list slicing to remove the �le

extension from �le names.

� Not all the lines in the text are useful.

Find a way to understand where the

�interesting� part of the text is, and tell

Python which rows to parse.

� Try to get rid of the punctuation and

other �undesired� characters (e.g., '�' or

'\n') from words.

� NumPy has a way to compute the

percentile of a set of values.

� Print the JSON using the �pretty print�

style.

Split string into �words�
fin = open(filename, 'r')

for line in fin:

# splitting using space as separator

words = line.split(" ")

Remove punctuation
import string

str_translator = str.maketrans('',

'',

string.punctuation)

line = line.translate(str_translator)

13/20



Bibliography i

Homepage of the Python programming language. Available at:

https://www.python.org/

HTML.it, Guida al linguaggio Python. Available at:

https://www.html.it/guide/guida-python/

Homepage of the Stackover�ow website. Available at:

https://stackoverflow.com/

Python 3 documentation. Available at:

https://docs.python.org/3/

Use of the sys.argv variable. Available at: https://www.

pythonforbeginners.com/system/python-sys-argv

14/20

https://www.python.org/
https://www.html.it/guide/guida-python/
https://stackoverflow.com/
https://docs.python.org/3/
https://www.pythonforbeginners.com/system/python-sys-argv
https://www.pythonforbeginners.com/system/python-sys-argv


Bibliography ii

Tutorialspoint � Python command line arguments. Available at:

https://www.tutorialspoint.com/python/python_

command_line_arguments.htm

The getopt module. Available at:

https://docs.python.org/3/library/getopt.html

The argparse module. Available at: https://docs.python.

org/3/library/argparse.html#module-argparse

The with statement. Available at: https://docs.python.

org/3/reference/compound_stmts.html#with

15/20

https://www.tutorialspoint.com/python/python_command_line_arguments.htm
https://www.tutorialspoint.com/python/python_command_line_arguments.htm
https://docs.python.org/3/library/getopt.html
https://docs.python.org/3/library/argparse.html#module-argparse
https://docs.python.org/3/library/argparse.html#module-argparse
https://docs.python.org/3/reference/compound_stmts.html#with
https://docs.python.org/3/reference/compound_stmts.html#with


Bibliography iii

Reading and writing �les. Available at:

https://docs.python.org/3/tutorial/inputoutput.

html#reading-and-writing-files

The tarfile module. Available at:

https://docs.python.org/3/library/tarfile.html

The zipfile module. Available at:

https://docs.python.org/3/library/zipfile.html

The JSON format homepage. Available at:

https://www.json.org/json-en.html

The Python JSON module documentation. Available at:

https://docs.python.org/3/library/json.html

16/20

https://docs.python.org/3/tutorial/inputoutput.html#reading-and-writing-files
https://docs.python.org/3/tutorial/inputoutput.html#reading-and-writing-files
https://docs.python.org/3/library/tarfile.html
https://docs.python.org/3/library/zipfile.html
https://www.json.org/json-en.html
https://docs.python.org/3/library/json.html


Bibliography iv

Functions. Available at: https:

//docs.python.org/3/glossary.html#term-function

Stackover�ow. Passing variable by reference. Available at:

https://stackoverflow.com/questions/986006/

how-do-i-pass-a-variable-by-reference

Python PEP 257: Docstring conventions. Available at:

https://www.python.org/dev/peps/pep-0257/

List of built-in exceptions. Available at:

https://docs.python.org/3/library/exceptions.html

Extending Python with C or C++. Available at:

https://docs.python.org/3/extending/extending.html

17/20

https://docs.python.org/3/glossary.html#term-function
https://docs.python.org/3/glossary.html#term-function
https://stackoverflow.com/questions/986006/how-do-i-pass-a-variable-by-reference
https://stackoverflow.com/questions/986006/how-do-i-pass-a-variable-by-reference
https://www.python.org/dev/peps/pep-0257/
https://docs.python.org/3/library/exceptions.html
https://docs.python.org/3/extending/extending.html


Bibliography v

ctypes A foreign function library for Python. Available at:

https://docs.python.org/3/library/ctypes.html#

module-ctypes

Running bash commands in Python. Available at:

https://stackabuse.com/

executing-shell-commands-with-python/

Homepage of the NumPy package. Available at:

https://numpy.org/

Documentation of the NumPy package. Available at:

https://numpy.org/doc/stable/index.html

18/20

https://docs.python.org/3/library/ctypes.html#module-ctypes
https://docs.python.org/3/library/ctypes.html#module-ctypes
https://stackabuse.com/executing-shell-commands-with-python/
https://stackabuse.com/executing-shell-commands-with-python/
https://numpy.org/
https://numpy.org/doc/stable/index.html


Bibliography vi

C.H. Harris et al. Array programming with NumPy. Nature

585, 357 (2020). Available at:

https://www.nature.com/articles/s41586-020-2649-2

Wikipedia � The Monte Carlo method. Available at:

https://en.wikipedia.org/wiki/Monte_Carlo_method

Numerical evaluation of integrals. Available at:

https://towardsdatascience.com/

monte-carlo-integration-in-python-a71a209d277e

Monte Carlo integration in Python. Available at:

http://people.duke.edu/~ccc14/sta-663-2016/15C_

MonteCarloIntegration.html

19/20

https://www.nature.com/articles/s41586-020-2649-2
https://en.wikipedia.org/wiki/Monte_Carlo_method
https://towardsdatascience.com/monte-carlo-integration-in-python-a71a209d277e
https://towardsdatascience.com/monte-carlo-integration-in-python-a71a209d277e
http://people.duke.edu/~ccc14/sta-663-2016/15C_MonteCarloIntegration.html
http://people.duke.edu/~ccc14/sta-663-2016/15C_MonteCarloIntegration.html


Bibliography vii

Wikipedia � Entropy (information theory). Available at:

https://en.wikipedia.org/wiki/Entropy_

(information_theory)

20/20

https://en.wikipedia.org/wiki/Entropy_(information_theory)
https://en.wikipedia.org/wiki/Entropy_(information_theory)

	Foreword
	Manipulating lists
	File input/output, JSON, Functions, & Handling errors
	Running third party software
	The NumPy module
	Hands-on Session

