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Foreword



Outline of the course/lesson

Course

1. Introduction to the basics of the Python language.

2. More �basics� of Python & basics of NumPy.

3. IPython notebook & Visualization of data (Matplotlib).

4. Data analysis (Pandas).
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What is �Data science�?



Data science

Data science is a cross-disciplinary �eld using
scienti�c methods, processes, algorithms and systems

to extract knowledge and insights from
structural and unstructured data.
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Data science

Data science is

Due to its intrinsic nature, data science is strongly associated with these

concepts:

Data mining (Knowledge mining from data) Discover patterns in data, prepare data

that are functional/useful to address the questions we have, and

extract/pre-process data from sources (e.g., using APIs).

Machine learning A branch of Arti�cial intelligence studying computer algorithms that

improve automatically through experience (i.e., comparison between the

outcome of a model on some training data, and the same thing based on

�real� data). Applications include, among other things, classi�cation,

grouping (clustering), reduction, and �ltering.

Big data Considerable amount of data (usually obtained from digital records).

Sometimes the pre�x big- does not refer exclusively to the size of the data

but, rather, to their dimensionality (big data → better data).
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Data science

Common mistake

�. . . the key word in data science is not 'data'; it is 'science.'

Data science is only useful when the data are used to answer

a question. That is the science part of the equation. The problem

with this view of data science is that it is much harder than the

view that focuses on data size or tools. It is much, much easier to

calculate the size of a data set and say 'My data are bigger than

yours' or to say, 'I can code in Hadoop, can you?' than to say, 'I

have this really hard question, can I answer it with my data?'.�

(Je� Leek)

• https://simplystatistics.org/2013/12/12/the-key-word-in-data-science-is-not-data-it-is-science/
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Data science

What do we need to do data science?

To address our �questions� we need to store,
manipulate, and analyze (e.g., visualize) the data

in an e�cient and scalable way.
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Data analysis with Python

(Pandas)



Pandas

� Development started in 2008 (latest ver. 1.1.4).

Wes McKinney is the Benevolent Dictator for Life.

� Goal: to be the fundamental high-level building

block for doing practical, real world data analysis in

Python. Additionally, it has the broader goal of

becoming the most powerful and �exible open

source data analysis/manipulation tool available in

any language.

� Highly optimized for performance, with critical

code paths written in Cython and/or C.

� Based on two types of data structures: Series

and DataFrame.

• https://pandas.pydata.org/pandas-docs/stable/user_guide/index.html
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Pandas

� Flexible handling of data supporting operations

like: reshaping, pivoting, label-based slicing, fancy

indexing, insertion, split, merge, and join.

� Intelligent data alignment and integrated handling

of �messy data� and missing entries.

� Time series-functionality: date range generation

and frequency conversion, moving window

statistics, date shifting and lagging. Even create

domain-speci�c time o�sets and join time series

without losing data.

� Provides tools for reading and writing data in

multiple formats (CSV, TXT, Excel, SQL,

JSON, HDF5).

• https://pandas.pydata.org/pandas-docs/stable/user_guide/index.html 3/11
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Data structures: Series

0

1

2

3

index values

Series

Series is a one-dimensional labeled

array capable of holding any data type (int,

str, �oat, Python objects, etc.). The axis

labels are collectively referred to as the

index. Note: The index is not necessarily

numeric.

• https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html#series
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Data structures: Series

Creating/initializing a Series

# series from single value

ser1 = pd.Series(5.0, index=np.arange(10))

# series with non-numerical index

ser2 = pd.Series(5.0, index=['a','b','c','d','e'])

# series from ndarray

ser1 = pd.Series(np.random.random(10), index=np.arange(10))

# series from dictionary

mydict = {'a': 10., 'b': True, 'c': 'alex', 'd': -3, 'e': -2.5}

ser1 = pd.Series(mydict)

0

1

2

3

index values

Series

Basic operations on Series

include, among others,

viewing, and description.

Hands-on
# defining a Series

ser = pd.Series(np.random.random(10), index=np.arange(10))

# visualizing a Series (eg. the first/last 3 rows)

ser.head(3) # alternatively ser.tail(3)

# obtaining basic information over a Series

ser.describe()
4/11



Playing with Series

Operations with Series

Series behave like NumPy arrays (ndarray), and support operations

like sum, product (by a scalar or between Series), and so on. Series

support also operations like average, maximum (minimum), and so on.

However, a key di�erence between Series and ndarray is that

operations between Series automatically align the data based on label

(index). Thus, you can write computations without giving consideration

to whether the Series involved have the same labels or not.
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Playing with Series

Hands-on
# Series with the same indexes

ser1 = pd.Series(2.5, index=np.arange(10))

ser2 = pd.Series(2.5, index=np.arange(10))

ser3 = ser1+ser2

# Series with the different indexes

ser1 = pd.Series(2.0, index=np.arange(5))

ser2 = pd.Series(2.0, index=np.arange(3,8))

ser3 = ser1+ser2
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Playing with Series

Resampling and rolling on Series

pandas contains extensive capabilities

and features for working with time series

data. In particular, we will concentrate

on:

� Performing resampling operations

during frequency conversion (e.g.,

converting secondly data into

5-minutely data).

� Performing rolling operations (e.g.,

computing a moving average).

}
}
}
}
}

• https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html

• https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.rolling.html
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Playing with Series

Hands-on
##### RESAMPLING #####

# creating the index of the Series

myindex = pd.date_range(start='1/1/2018', end='4/30/2018', freq='D')

# creating a Series made all by the same value

ser1 = pd.Series(5., index=myindex)

# resampling the original Series into another with monthly resolution

# whose values are the sum of the values of the original Series

ser2 = ser1.resample('M').sum()

##### ROLLING #####

# setting parameters

sersize = 500

serroll = 25

# creating a Series made of random integers in the range [0,100]

ser1 = pd.Series(np.random.randint(0, high=101, size=sersize), index=range(sersize))

# computing the rolling mean using a window of size "serroll"

ser2 = ser1.rolling(serroll).mean()

# computing the rolling mean using a window of size "serroll"

# evaluated at the center of the window

ser3 = ser1.rolling(serroll, center=True).mean()

5/11



Data structures: DataFrame

A DataFrame is a 2-dimensional labeled data

structure with columns of (potentially) di�erent

types. You can think of it like a spreadsheet or a

SQL table, or a dictionary of Series objects.
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Data structures: DataFrame

0

1

2

3

A B C

A0 B0 C0

A1 B1 C1

A2 B2 C2

A3 B3 C3

index

DataFrame

columns

Along with the data, you can optionally pass

index (row labels) and columns (column labels)

arguments. Data alignment between DataFrame

objects automatically align on both the columns

and the index (discard all data not matching up

to the passed index).

Note: If axis labels are not passed, they will be

constructed from the input data based on

common sense rules.

• https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html#dataframe
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Data structures: DataFrame

0

1

2

3

A B C

A0 B0 C0

A1 B1 C1

A2 B2 C2

A3 B3 C3

index

DataFrame

columns

You can treat a DataFrame semantically like a

dictionary of Series objects using the same

indexes. This means that getting, setting, and

deleting columns works with the same syntax as

the analogous dictionary operations.

• https://pandas.pydata.org/pandas-docs/stable/user_guide/dsintro.html#dataframe
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Playing with DataFrame(s)

Creating a DataFrame
# importing pandas

import pandas as pd

# common paramters

nr_rows = 10

nr_cols = 5

alphabet = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

# creating a DataFrame (setting only the values)

mydf = pd.DataFrame(10.*np.random.random((nr_rows,nr_cols)))

# creating a DataFrame (setting index and columns names)

mydf = pd.DataFrame(10.*np.random.random((nr_rows,nr_cols)),\

index=list(range(nr_rows)),\

columns=[x for x in alphabet[:nr_cols]])

# creating a DataFrame from a dictionary

mydict = {'A': 1.5,

'B': pd.Timestamp('20130102'),

'C': pd.Series(-5., index=list(range(4)), dtype='float32'),

'D': np.array([3] * 4, dtype='int32'),

'E': pd.Categorical(["test", "train", "test", "train"]),

'F': 'foo'

}

mydf = pd.DataFrame(mydict)

• https://pandas.pydata.org/pandas-docs/stable/user_guide/10min.html
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Playing with DataFrame(s)

Read/Write DataFrame

To read/write a DataFrame

(or a Series) from a CSV �le,

we can use the methods

.read_csv() and

.to_csv(), respectively.

Note

Analogous methods exist also

for the HDF5, Excel, JSON,

HTML, Stata, pickle, and

SQL formats.

Hands-on
# reading a CSV file

mydf = pd.read_csv('scorsese_filmography.txt',

sep=';', # specifying the separator

names=['Year', 'Title', 'Director',\

'Producer', 'Writer'], # cols names

skiprows=1 # skipping the first row

)

# writing the DataFrame on file

mydf.to_csv('df-csv-output_example.csv',

sep = ':', # separator

header = True, # writing the header (column names)

index = True, # writing the row indexes

mode = 'w', # writing mode

compression = None # compression mode

)

• https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html

• https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html 7/11
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Playing with DataFrame(s)

Let us extract some basic information
about a DataFrame

# common paramters

nr_rows = 20

nr_cols = 5

alphabet = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

# creating a Dataframe

mydf = pd.DataFrame(10.*np.random.random((nr_rows,nr_cols)),\

index=list(range(nr_rows)),\

columns=[x for x in alphabet[:nr_cols]]

)

Getting information
# printing ALL the DataFrame

mydf

# printing DataFrame (only the first 3 rows)

mydf.head(3)

# printing DataFrame (only the last 3 rows)

mydf.tail(3)

# printing the types of each column

mydf.dtypes

# printing the indexes

mydf.index

# printing the columns

mydf.columns

# getting a summary description of the DataFrame

mydf.describe()

• https://pandas.pydata.org/pandas-docs/stable/user_guide/10min.html
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Playing with DataFrame(s)

Case study:

England climate data

Let's consider the records of the

average monthly temperature (in �)

registered in central England from

year 1659 to 2016.

# reading the file

mydf = pd.read_csv('data_climate-uk.dat',

skiprows=6, # skipping header

sep=r'\s+', # deleting multiple

# spaces with a regexp

# telling pandas how to deal with

# "incorrect entries"

na_values=[-99.9, -99.99]

)

Hands-on
# extracting a single column

mydf['MAY'] # equivalently we can use mydf.MAY

# extracting rows (by their index values = label)

# extracting all the values of the '80

mydfeighties = mydf.loc[1980:1989]

# the same as above but extracting only two columns

mydfeighties = mydf.loc[1980:1989, ['MAY', 'NOV']]

# extracting the first three rows (by their position)

mydfeighties.iloc[0:3]

# extracting three rows (by their position)

# at steps of two

mydfeighties.iloc[0:6:2]

# same as above but selecting only one column

# (the last)

mydfeighties.iloc[0:6:2,1]

# sorting by column (eg. the month of May)

mydfsort = mydf.sort_values(by='MAY').copy()
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Playing with DataFrame(s)

Hands-on: Logic-slicing
temp_thres = 10.5

# logic slicing

# finding for which years the average temperature in May is

# above a given threshold

mydf['MAY'] > temp_thres

# extracting only the years (indexes) with temperature > threshold

tmpdf = mydf['MAY'] > temp_thres

mylist = list(mydf[tmpdf == True].index)

# alternatively use: mydf[ tmpdf == True].index.tolist()

# selecting the data only for the selected years

mydf2 = mydf.loc[mylist]

# printing the results

mydf2
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Playing with DataFrame(s)

Hands-on: Add/deleting data
# extracting the years (and converting them into strings)

years = pd.Series(mydf.index, index=mydf.index).apply(str)

# creating lists containing the decade and the century

decade = [int(x[:3]+'0') for x in years]

century = [int(x[:2]+'00') for x in years]

millenium = [int(x[:1]+'000') for x in years]

# adding the new columns

mydf['decade'] = decade

mydf['century'] = century

mydf['millennium'] = millennium

# showing the updated DataFrame

mydf.head()

# deleting one column

mydf = mydf.drop(columns=['millennium'])

# deleting one row

mydf = mydf.drop(1659)

# showing the updated DataFrame

mydf.head()
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Playing with DataFrame(s)

Hands-on: Operations with DataFrame

# showing the the average of the columns of the DataFrame

mydf.mean()

# summing two columns first and making the average then

mydf2 = 0.5*(mydf['JAN']+mydf['FEB'])

mydf2

# accounting (or not for the presence of NaN values)

mymax1 = mydf['AUG'].max(skipna=False)

mymax2 = mydf['AUG'].max()
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Playing with DataFrame(s)

Merging & Grouping

There are three categories of

merging/grouping operations:

� Splitting the data into

groups based on some

criteria.

� Applying a function to

each group

independently.

� Combining the results

into a data structure.

Hands-on
# grouping temperatures according to the decade

gp_by_decade = mydf.groupby('decade')

mydf_agg_decade = gp_by_decade.aggregate(np.mean)

# grouping temperatures according to the century

gp_by_century = mydf.groupby('century')

mydf_agg_century = gp_by_century.aggregate(np.mean)

#### EXAMPLE OF JOIN ####

# creating two DataFrames with one column (key)

# present in both DataFrames

mydf_left = pd.DataFrame({'key': ['a', 'b', 'c', 'd'],

'lval': np.arange(4)})

mydf_right = pd.DataFrame({'key': ['a', 'b', 'c', 'e'],

'rval': np.arange(4,8)})

# merging the two DataFrames using the column "key" as

# index to perform the matching

mydf_merge = pd.merge(mydf_left, mydf_right, on='key')

mydf_merge

• https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html
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Playing with DataFrame(s)

Hands-on: Plotting a DataFrame
# creating a DataFrame

mydf = pd.DataFrame(np.random.randn(1000, 4),

index=pd.date_range('1/1/2000',

periods=1000),

columns=['A', 'B', 'C', 'D'])

mydf = mydf.cumsum()

plt.figure()

mydf.plot() Jan
2000
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Jul Jul Jul

70

60

50

40
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20

10

0

10
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Playing with DataFrame(s)

Check the Cheatsheet provided with the materials!
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Hands-on Session



Excercise 1

Task

After loading the data of births and deaths occurred in France from

January 1946 to December 2019, do:

1. Load the two datasets as two distinct DataFrames.

2. Merge the two DataFrames onto a new one.

3. On the new DataFrame, create a new column accounting for the �decade�.

4. Find the year/month with the highest number of births and deaths.

5. Compute the so-called natural population change, Npc (i.e., the di�erence

between births and deaths).

6. Find the year/month of negative values of Npc .

7. Group the results (applying the sum method) per year and decade.

8. Plot the value of the Npc per year together with its (3 points) moving

average. 8/11



Excercise 1

Data

The data are freely available from the website of the French National

Institute of Statistics and Economic Studies (INSEE). Speci�cally:

births www.insee.fr/fr/statistiques/serie/000436391

deaths www.insee.fr/fr/statistiques/serie/000436394

The data can be downloaded as a CSV �le (you can select the range of

month/years).

8/11
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Excercise 1

Tip

The data are provided as .zip archives, and the �le containing the

data has a header and columns which are not useful. Use the power

of the .read_csv() function to get rid of the unnecessary

information.

Caution

Be careful with the handling of values as strings.
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