La fisica dei sistemi complessi Complex networks: structure and dynamics

Alessio Cardillo

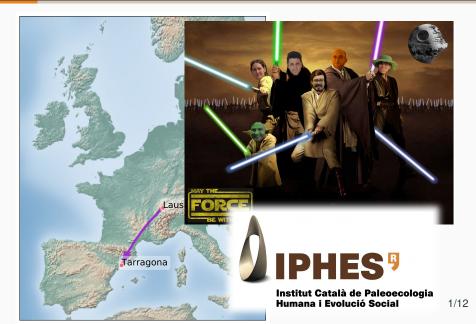
Department of Engineering Mathematics, University of Bristol Bristol, United Kingdom

Department of Physics – University of Catania, Catania (Italy) Thursday 10th January 2019

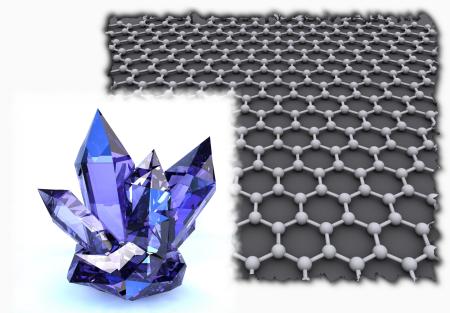
Who is Alessio Cardillo?

Zaragoza

Catania


Instituto Universitario de Investigación Biocomputación y Física de Sistemas Complejos Universidad Zaragoza

Universidad Zaragoza


1/12

Tackling complexity via networks: structure & dynamics

Answers

 Complex systems contain many constituents interacting non linearly (*i.e.* non-predictable);

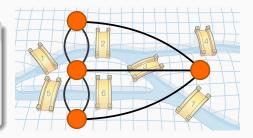
Answers

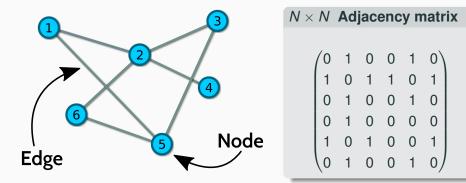
- Complex systems contain many constituents interacting non linearly (*i.e.* non-predictable);
- The constituents of a complex system are interdependent;

Answers

- Complex systems contain many constituents interacting non linearly (*i.e.* non-predictable);
- The constituents of a complex system are interdependent;
- A complex system possesses a structure spanning several scales;

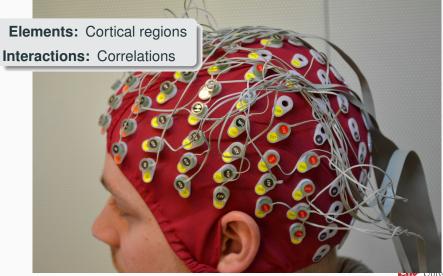
Answers

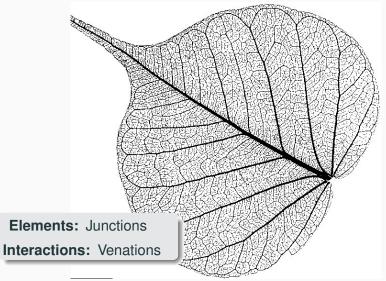

- Complex systems contain many constituents interacting non linearly (*i.e.* non-predictable);
- The constituents of a complex system are interdependent;
- A complex system possesses a structure spanning several scales;
- A complex system is capable of emerging behavior.


A bit of history

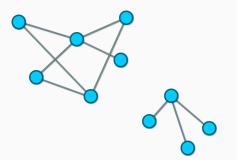
In 1736 Leonard Euler found the answer to the Königsberg bridge problem, and gave birth to graph theory.

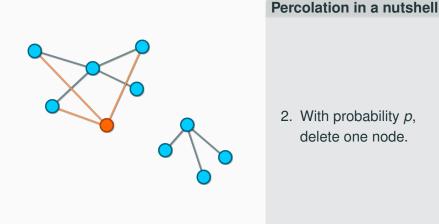
Graph Theory in a nutshell


Using networks to study complex systems is like paleontology ...



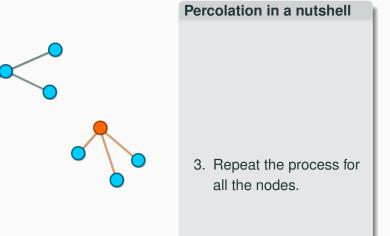
BRISTOL





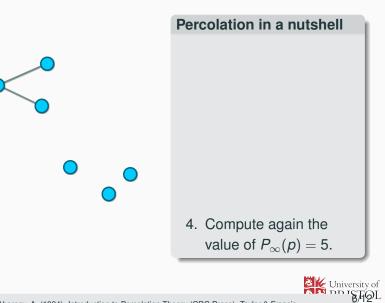
Percolation in a nutshell

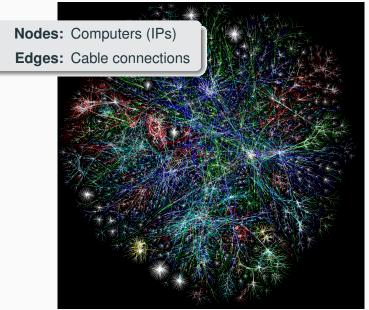
1. Compute the number of nodes (size) of the largest component, $P_{\infty}(0) = 6.$


• Stauffer, D., & Aharony, A. (1994). Introduction to Percolation Theory (CRC Press). Taylor & Francis.

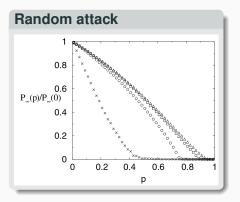
• Stauffer, D., & Aharony, A. (1994). Introduction to Percolation Theory (CRC Press). Taylor & Francis.

💐 🖌 University of

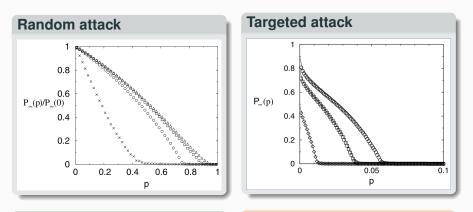

STOI


💐 🖌 University of

STG1


• Stauffer, D., & Aharony, A. (1994). Introduction to Percolation Theory (CRC Press). Taylor & Francis.

• Stauffer, D., & Aharony, A. (1994). Introduction to Percolation Theory (CRC Press). Taylor & Francis.


Internet is resilient to random failures.

• R. Cohen et al. (2000). Resilience of the Internet to Random Breakdowns. Phys. Rev. Lett., 85, 4626

ity of

F@I

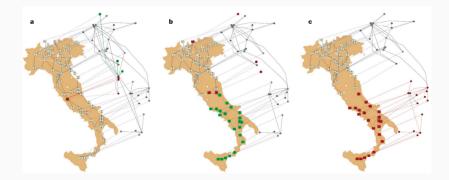
• R. Cohen et al. (2001). Breakdown of the Internet under Intentional Attack. Phys. Rev. Lett., 86, 3682

Internet is resilient to random failures.

Internet is extremely vulnerable to targeted attacks!

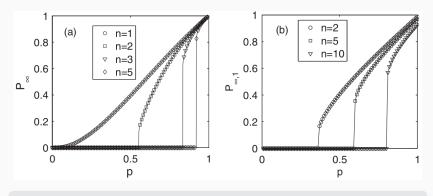
• R. Cohen et al. (2000). Resilience of the Internet to Random Breakdowns. Phys. Rev. Lett., 85, 4626

• R. Cohen et al. (2001). Breakdown of the Internet under Intentional Attack. Phys. Rev. Lett., 86, 3682


A concrete example: Italy 2003 blackout

On the 28th of Sep. 2003 a major blackout affected Italy (except for Sardinia) for 12 hours.

A concrete example: Italy 2003 blackout



• Buldyrev S V, Parshani R, Paul G, Stanley H E, & Havlin S. Catastrophic cascade of failures in interdependent

networks. Nature, 464, 1025 (2010).

A concrete example: Italy 2003 blackout

• Gao J, Buldyrev S, Havlin S, & Stanley H E. Robustness of a Network of Networks. Phys. Rev. Lett., **107**, 195701 (2011).

Other applications

- Spreading of diseases/news/rumors
- Sociophysics
- Biophysics/Biology/Bioinformatics
- Econophysics
- Transportation
- Synchronization/Control
- Smart Cities
- Science of Science
- Language and Cognition
- Neuroscience

• . . .

Other applications

What about Catania?

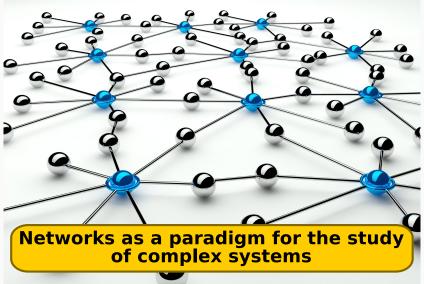
Complex systems & DFA @UniCT

Complex systems & DFA @UniCT

Roberta Sinatra

De Domenico

Moreno Bonaventura


Giovanna Miritello ... and (many) others

Summing up ...

Traveling abroad will enrich you both personally and professionally

Take home messages

Take home messages

Bibliography

- Gleick, James. "Chaos: Making a new science." Viking, New York, (1987).
- Barabási, Albert-László. "Linked: The New Science of Networks." Perseus Books Group, (2002).
- Gapra, Fritjof. "The Web of Life." Harper Collins, (1996).
- Strogatz, Steven H. "Sync: The Emerging Science of Spontaneous Order." Hyperion, New York, (2003).
- Latora V., Nicosia V. & Russo G. "Complex Networks: Principles, Methods and Applications." Cambridge University Press (2017).
- Strogatz, S. H. "Nonlinear Dynamics And Chaos: With Applications To Physics, Biology, Chemistry And Engineering." Westview Press, (1994).

Contacts

alessio.cardillo@bristol.ac.uk http://www.bifi.es/~cardillo/

@a_cardillo