A quick introduction on data visualization

Alessio Cardillo (@a_cardillo)

Instituto Pirenaico de Ecología (IPE) - CSIC, Zaragoza (Spain)

XI Complexitat day – Barcelona (Spain) Wednesday, June 5th 2024

- Italian (born and raised in Catania).
- Background in Physics (MSc, PhD).
- High mobility (both spatial and topic-wise).

UNIVERSITAT ROVIRA i VIRGILI

- Italian (born and raised in Catania).
- Background in Physics (MSc, PhD).
- High mobility (both spatial and topic-wise).

CORREDORAS

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

PID2022-141558NB-I00

My most recent

My first

Why dataviz is important?

• We learn (also) through vision "A picture is worth a thousand words" (1911, A. Brisbane)

Why dataviz is important?

- We learn (also) through vision "A picture is worth a thousand words" (1911, A. Brisbane)
- Complex concepts require **effective** communication methods.

- * Beautiful is better than ugly.
- * Explicit is better than implicit.
- * Simple is better than

complex.

* Complex is better than

complicated.

- * Flat is better than nested.
- * Sparse is better than dense.
- * Readability counts.

(The Zen of Python)

Why dataviz is important?

- We learn (also) through vision "A picture is worth a thousand words" (1911, A. Brisbane)
- Complex concepts require **effective** communication methods.
- The proliferation of content calls for ways to stand out.

Why dataviz is important?

- We learn (also) through vision "A picture is worth a thousand words" (1911, A. Brisbane)
- Complex concepts require **effective** communication methods.
- The proliferation of content calls for ways to **stand out**.
- Dissemination to general and non-specialized audience.

Summary

What we are going to talk today

- Definition/history of data visualization.
- How we "see" things.
- Visual encoders and (partial) diagrams' phenotype.
- Principles of figure design.
- Take home messages.
- Hands-on (if time allows).

Summary

What we are NOT going to talk today

- Solutions based on a specific software.
- Tailored solutions for your specific problems.
- Interactive visualization.
- Infographic and (many) artistic aspects.

What is data visualization?

Data visualization is the process of translating raw data into graphs, images that explain numbers and allow us to gain insight from them.

	time

4/23

Sight, perception, and cognition

Seeing, perceiving, and knowing are different phenomena. In particular:

SEEING = SIGHT + PERCEPTION + COGNITION

The human eye

• Two types of photoreceptors: Rods ($\approx 10^8$) and Cones ($\approx 10^7$).

The human eye

 Visual acuity is not homogeneous across the visual field (colors only in the foveal region)!

 Sight explores the visual field akin to a Levy flight (*saccades* and *fixation*).

The human eye

 Sight explores the visual field akin to a Levy flight (*saccades* and *fixation*).

Tips

- Fixations **ARE NOT RANDOM**!
- O not introduce multiple "new stuff" at the same time (the eye will not notice it).
- O Leverage saccades and fixation to convey better your message!

Perception

What retina gets is not what your brain perceives.

Perception

 The relationship between working memory and long term memory is similar to that between RAM (*i.e.*, quick but with limited capacity) and HD (*i.e.*, high capacity and reliable but slow).

Perception

• The brain compares what it **sees** with what it **remembers**.

Cognition

• The brain loves differences!

Cognition

 Objects can be identified according to their main features, components, and configuration.

Cognition

 Objects can be identified according to their main features, components, and configuration.

features

Cognition

• Objects can be identified according to their **main features**, **components**, and **configuration**.

components

Cognition

 Objects can be identified according to their main features, components, and configuration.

components

Cognition

 Objects can be identified according to their main features, components, and configuration.

components

Cognition

 Objects can be identified according to their main features, components, and configuration.

configuration

Cognition

• Objects can be identified according to their **main features**, **components**, and **configuration**.

configuration

Tip

The more an object is **stylized**, the easier it gets to be **recognized** (less cognitive burden), and the better the picture conveys that object's **function** (very handy in presentations and modeling).

- Established at the beginning of the XXth century by Christian von Ehrenfels.
- It emphasises the processing of entire patterns and configurations, and not merely individual components (*i.e.*, the brain perceives things like "aggregates" gestalt → pattern).

• Kanizsa's Triangle: https://en.wikipedia.org/wiki/Gaetano_Kanizsa

Visual encoders

- Our brain is able to process several types of information encoders.
- Depending on the case, we can use one encoding, or combine together more of them.
- Be careful! We are not all able to perceive encoders equally! (*e.g.*, color blindness)

https://blog.qlik.com/visual-encoding

• K. Börner et al. Proc. Natl. Acad. Sci. USA, 116, 1857 (2019).

Cleveland and McGill made a **ranked list** of graphic forms (*i.e.*, visual encoders) to encode data based on the brain's ability to process them for comparing/discriminating.

This list allow us to understand why, for instance, a bar chart is better than a bubble map which, in turn, is better than a heatmap.

• W. S. Cleveland, and R. McGill, Jour. Am. Stat. Ass., 79, 531-554 (1984). DOI: 10.1080/01621459.1984.10478080

Cleveland and McGill made a **ranked list** of graphic forms (*i.e.*, visual encoders) to encode data based on the brain's ability to process them for comparing/discriminating.

This list allow us to understand why, for instance, a bar chart is better than a bubble map which, in turn, is better than a heatmap.

• W. S. Cleveland, and R. McGill, Jour. Am. Stat. Ass., 79, 531-554 (1984). DOI: 10.1080/01621459.1984.10478080

Hue (category)

Saturation/Lightness (increment)

Contrast (differences)

Divergence (opposing effects)

• https://www.nature.com/articles/s41467-020-19160-7

- https://www.nature.com/articles/s41467-020-19160-7
- https://matplotlib.org/tutorials/colors/colormaps.html

https://www.nature.com/articles/s41467-020-19160-7

	ors Referees C				
May 2007					
Guide	e to Acce	ptable Us	e of Color	in "(Color d	online)" Figures
0 011 01	litted as color PostScript	(or EPS) files will be publi	ished online in color at no ex	xtra charge to the author. Ca le versions, and that the figu	are should be taken to ensure that caption are will be sufficiently clear in both
Figures subm and text refer versions. We	ences to the figures are suggest captions contain	n phrasing such as " the	red (dark gray) line" as w	vell as beginning with "(Cold	r online)".

• https://journals.aps.org/authors/guide-acceptable-color-online-figures-h24

• https://coolors.co/

Diagrams' phenotypes

Diagrams' types

- Amounts
- Distributions
- Proportions
- *x*–*y* relationships
- Geospatial data

Distributions

Ridgeline plot

Proportions

Pie chart

Mosaic plot

Parallel sets

Scatterplot

Bubble chart

Density contours

Hex bins

Correlogram

10/23

Geospatial data

Мар

S Court

Choropleth

Each diagram's type has strengths but also weaknesses!

Principles of figure design

• The **Principle of proportional ink** can guide us to design more *effective* visualizations.

The sizes of shaded areas in a visualization need to be proportional to the data values they represent.

• C. T. Bergstrom and J. West. (2017) https://www.callingbullshit.org/tools/tools_proportional_ink.html

• The **Principle of proportional ink** can guide us to design more *effective* visualizations.

The sizes of shaded areas in a visualization need to be proportional to the data values they represent.

• We can summarize this principle in the so-called Tufte's **lie factor**, *L*:

 $L = \frac{\text{Effect in graph}}{\text{Effect on data}}$

• E. R. Tufte, The Visual Display of Quantitative Information. Graphics Press (Cheshire, CT) 2001.

 The Principle of proportional ink can guide us to design more *effective* visualizations.

The sizes of shaded areas in a visualization need to be proportional to the data values they represent.

• We can summarize this principle in the so-called Tufte's **lie factor**, *L*:

$$L = \frac{\text{Effect in graph}}{\text{Effect on data}}$$

If L > 1, the plot OVERSTATES THE EFFECT (*i.e.*, it is lying)!
(Note: This is the case in ≈ 99% of 3D plots).

• E. R. Tufte, The Visual Display of Quantitative Information. Graphics Press (Cheshire, CT) 2001.

Relative size using full range

Relative size using partial range

• N. P. Rougier et al. Ten Simple Rules for Better Figures. PLoS Comput Biol 10, e1003833 (2014).

11/23

12/23

Three ways of dealing with point overlap

• Changing the **transparency** (*a.k.a.* alpha level) of the points.

Three ways of dealing with point overlap

- Changing the **transparency** (*a.k.a.* alpha level) of the points.
- 2 Adding a **border** to visually separate the points.

Three ways of dealing with point overlap

- Changing the **transparency** (*a.k.a.* alpha level) of the points.
- **2** Adding a **border** to visually separate the points.
- Manipulate (a bit) the points' positions (*a.k.a.* jitter).

Beware

Adding a border increases the visibility, but *de-facto* reduces the **effective size** of your points!

Definition

Applying **jitter** to the points, *i.e.*, to displace each point randomly by a small amount in either one (or both) of the coordinates.

12/23

• Annual Estimates of the Resident Population for the United States, Regions, States, District of Columbia, and Puerto Rico: April 1, 2020 to July

1, 2023 (NST-EST2023-POP). Available online at:

https://www2.census.gov/programs-surveys/popest/tables/2020-2023/state/totals/NST-EST2023-POP.xlsx

Rule of thumb

Whenever possible, design your figures such that they **do not** need a legend.

If there is a clear visual ordering in your data, make sure to **match it** in the legend.

Labeling your data with text is **much more effective** than using legends.

14/23

14/23

• https://viz.wtf/

Data-ink ratio

A good graphical design aims to find a **balance** between the amount of ink used to display data and the overall amount of ink needed to prepare the graphic. In other words, we need to maximize the so-called **Data-ink ratio**.

Data-ink ratio = $\frac{\text{data ink}}{\text{total ink}}$

Remember: there is always time to add "stuff." Begin with a SIMPLE (but effective) design!

Data-ink ratio

A good graphical design aims to find a **balance** between the amount of ink used to display data and the overall amount of ink needed to prepare the graphic. In other words, we need to maximize the so-called **Data-ink ratio**.

Data-ink ratio $= \frac{\text{data ink}}{\text{total ink}}$

Remember: there is always time to add "stuff." Begin with a SIMPLE (but effective) design!

Tip

Use the brain's ability to distinguish between foreground and background (and differences in general) and remember:

GRAY IS YOUR FRIEND

Tables

a ugi				
Rank	Title	Amount		
1	Star Wars: The Last Jedi	\$71,565,498		
2	Jumanji: Welcome to the Jungle	\$36,169,328		
3	Pitch Perfect 3	\$19,928,525		
4	The Greatest Showman	\$8,805,843		
5	Ferdinand	\$7,316,746		

b ugly Title Amount Rank Star Wars: The Last Jedi \$71,565,498 Jumanji: Welcome to the Jungle \$36,169,328 2 Pitch Perfect 3 The Greatest Showman \$8,805,843 4 \$7,316,746 Ferdinand

с

Rank	Title	Amount
1	Star Wars: The Last Jedi	\$71,565,498
2	Jumanji: Welcome to the Jungle	\$36,169,328
3	Pitch Perfect 3	\$19,928,525
4	The Greatest Showman	\$8,805,843
5	Ferdinand	\$7,316,746

d

Rank	Title	Amount
1	Star Wars: The Last Jedi	\$71,565,498
2	Jumanji: Welcome to the Jungle	\$36,169,328
3	Pitch Perfect 3	\$19,928,525
4	The Greatest Showman	\$8,805,843
5	Ferdinand	\$7,316,746

• C. O. Wilke, Fundamentals of Data Visualization: A Primer on Making Informative and Compelling Figures. O'Reilly Media (2019).

https://www.data-to-viz.com/caveats.html

16/23

Raster

Vector .svg

Tip

Try to limit **as much as possible** the "manual" post-processing of your graphics, because it constitutes a bottleneck in the pipeline.

My two cents of wisdom

 Tailor your content to your audience and medium. Try to imagine the ideal audience of your graphic, and the support/medium used to display it.

- Tailor your content to your audience and medium. Try to imagine the ideal audience of your graphic, and the support/medium used to display it.
- Start with a simple design and add further stuff only afterwards (and if it is really needed). Avoid redundancy/cluttering. Try to be as simple as possible (Tufte's data-ink ratio).

- Tailor your content to your audience and medium. Try to imagine the ideal audience of your graphic, and the support/medium used to display it.
- Start with a simple design and add further stuff only afterwards (and if it is really needed). Avoid redundancy/cluttering. Try to be as simple as possible (Tufte's data-ink ratio).
- Defaults (*e.g.*, rainbow colormap) are your **enemy**.

- Tailor your content to your audience and medium. Try to imagine the ideal audience of your graphic, and the support/medium used to display it.
- Start with a simple design and add further stuff only afterwards (and if it is really needed). Avoid redundancy/cluttering. Try to be as simple as possible (Tufte's data-ink ratio).
- Defaults (*e.g.*, rainbow colormap) are your **enemy**.
- Always keep in mind colorblind people.

- Tailor your content to your audience and medium. Try to imagine the ideal audience of your graphic, and the support/medium used to display it.
- Start with a simple design and add further stuff only afterwards (and if it is really needed). Avoid redundancy/cluttering. Try to be as simple as possible (Tufte's data-ink ratio).
- Defaults (*e.g.*, rainbow colormap) are your **enemy**.
- Always keep in mind colorblind people.
- <u>NEVER USE 3D!</u>

- Tailor your content to your audience and medium. Try to imagine the ideal audience of your graphic, and the support/medium used to display it.
- Start with a simple design and add further stuff only afterwards (and if it is really needed). Avoid redundancy/cluttering. Try to be as simple as possible (Tufte's data-ink ratio).
- Defaults (*e.g.*, rainbow colormap) are your **enemy**.
- Always keep in mind colorblind people.
- <u>NEVER USE 3D!</u>
- Ensure to make your labels **BIG ENOUGH**!

- Tailor your content to your audience and medium. Try to imagine the ideal audience of your graphic, and the support/medium used to display it.
- Start with a simple design and add further stuff only afterwards (and if it is really needed). Avoid redundancy/cluttering. Try to be as simple as possible (Tufte's data-ink ratio).
- Defaults (*e.g.*, rainbow colormap) are your **enemy**.
- Always keep in mind colorblind people.
- <u>NEVER USE 3D!</u>
- Ensure to make your labels BIG ENOUGH!
- ALWAYS display the truth!

Summing up . . .

Take home messages

Take home messages

Take home messages

Bibliography I

- E. R. Tufte, *The Visual Display of Quantitative Information*. Graphics Press (Cheshire, CT) 2001. ISBN: 978-0-9613921-4-7
- A. Cairo, Functional Art, The: An introduction to information graphics and visualization. New Riders 2012. ISBN: 978-0321834737.
- C. O. Wilke, Fundamentals of Data Visualization: A Primer on Making Informative and Compelling Figures. O'Reilly Media 2019.
- Franconeri, S. L. *et al.* "The Science of Visual Data Communication: What Works." Psychological Science in the Public Interest, **22**, 110–161 (2021).
- Li, Q. "Overview of Data Visualization." In: "Embodying Data." Springer, Singapore (2020).
- K. Börner *et al.* Data visualization literacy: Definitions, conceptual frameworks, exercises, and assessments. Proc. Natl. Acad. Sci. USA, 116, 1857 (2019).

Bibliography II

- N. P. Rougier *et al.* Ten Simple Rules for Better Figures. PLoS Comput Biol **10**, e1003833 (2014). Available at: http://journals.plos.org/ ploscompbiol/article?id=10.1371/journal.pcbi.1003833
- P. Lundblad, Second Pillar of Mapping Data to Visualizations: Visual Encoding. Available at: https://blog.qlik.com/visual-encoding
- F. Crameri *et al.*. The misuse of colour in science communication. Nature Communications, **11**, 5444 (2020).
- Documentation of Matplotlib Choosing colormaps in Matplotlib. Available at:

https://matplotlib.org/tutorials/colors/colormaps.html

Physical Review Journals. Guide to Acceptable Use of Color in "(Color online)" Figures. Available at: https://journals.aps.org/authors/ guide-acceptable-color-online-figures-h24

Bibliography III

- Data Viz. Caveats. Available at: https://www.data-to-viz.com/caveats.html
- T. L. Weissgerber *et al.*, Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm. PLoS Biol **13**, e1002128 (2015).
- A. Huff, Exploring the History of Data Visualization. Available at: https://playfairdata.com/ exploring-the-history-of-data-visualization/
- Wikipedia. Design thinking. Available online at: https://en.wikipedia.org/wiki/Design_thinking
 - Wikipedia. Ten Principles of Good Design. Available online at: https://en.wikipedia.org/wiki/Dieter_Rams#Ten_ Principles_of_Good_design
 - Wikipedia. Gaetano Kanizsa. Available online at: https://en.wikipedia.org/wiki/Gaetano_Kanizsa

Bibliography IV

- Wikipedia. Principles of grouping. Available online at: https://en.wikipedia.org/wiki/Principles_of_grouping
- W. S. Cleveland, and R. McGill, Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods. Journal of the American Statistical Association, **79**, 531–554 (1984). DOI: 10.1080/01621459.1984.10478080
- C. T. Bergstrom, and J. West. The principle of proportional ink. (2017). Available online at: https://www.callingbullshit.org/tools/ tools_proportional_ink.html