A coevolutionary model combining game theory and synchronization: the Evolutionary Kuramoto's Dilemma

Alessio Cardillo (@a_cardillo)

Department of Computer Science & Mathematics University Rovira i Virgili – Tarragona (Spain)

Applied Mathematics Seminar — University College Cork Thursday, March 19th 2020

UNIVERSITAT ROVIRA i VIRGILI

A world of synchronization...

A world of synchronization...

Foreword

Foreword

Foreword

Why we do observe only fireflies that flash in synchrony?

Summary

- Motivation
- Crash course on synchronization and evolutionary game theory on networks
- The Evolutionary Kuramoto's Dilemma
- Results
- Conclusion

Networks

• V. Latora et al. Complex Networks: Principles, Methods and Applications Cambridge University Press (2017).

Synchronization

 Physics Reports

 Volume 610, 26 January 2016, Pages 1-98

 ELSEVIER

 The Kuramoto model in complex networks

 Francisco A Rodrigues *B, Thomas K. DM. Peron ^{b, c} A, B, Peng J, c. 4, A, B, Jürgen Kurths ^{c, d, c, f} (S)

 $heta \in [0, 2\pi]$ Phase $\omega \in [0, 2\pi]$ Natural frequency $\lambda \geq 0$ Coupling

• Kuramoto, Y. (1984). Progress of Theoretical Physics Supplement, 79, 223-240.

• Kuramoto, Y. (1984). Progress of Theoretical Physics Supplement, 79, 223-240.

• Kuramoto, Y. (1984). Progress of Theoretical Physics Supplement, 79, 223-240.

• Arenas, A. et al. (2008). Physics Reports, 469, 93-153.

Review

Coevolutionary games—A mini review

Matiaž Perc ^a [⊖] [⊠]. Attila Szolnoki ^b [⊠]

Agents' states correspond to their strategies s: cooperation (s = 1) defection (s = 0).

Agents interact in a pairwise manner, and accumulate a payoff paccording to the game's payoff matrix.

- Roca, C. P., et al. (2009). Phys. of Life Rev., 6, 208.
- Szabó, G., & Fáth, G. (2007). Evolutionary games on graphs. Phys. Rep., 446, 97-216.

- Roca, C. P., et al. (2009). Phys. of Life Rev., 6, 208.
- Szabó, G., & Fáth, G. (2007). Evolutionary games on graphs. Phys. Rep., 446, 97-216.

• Roca, C. P., et al. (2009). Phys. of Life Rev., 6, 208.

• Szabó, G., & Fáth, G. (2007). Evolutionary games on graphs. Phys. Rep., 446, 97-216.

Repeat until stationary state, then measure the average cooperation

$$\langle C \rangle = \frac{1}{N} \sum_{i} s_{i} \in [0, 1]$$

- Roca, C. P., et al. (2009). Phys. of Life Rev., 6, 208.
- Szabó, G., & Fáth, G. (2007). Evolutionary games on graphs. Phys. Rep., 446, 97-216.

Phase

$$\theta_l \in [0, 2\pi]$$

Strategy
 $s_l = \begin{cases} 1 & \text{if } l \text{ is cooperator} \\ 0 & \text{if } l \text{ is defector} \end{cases}$

Payoff

$$p_{l} = r_{L_{l}} - \alpha \frac{c_{l}}{2\pi}$$
benefit cost
 $\alpha \in]0, \infty[$

Benefit
$$r_{L_{I}} = \frac{1}{k_{I}} \sum_{j=1}^{N} a_{lj} \frac{|e^{i\theta_{I}} + e^{i\theta_{j}}|}{2}$$
$$r_{L} \in [0, 1],$$

Cosi

E

$$c_l = \Delta \dot{ heta}_l = \left| \dot{ heta}_l(t) - \dot{ heta}_l(t-1)
ight|$$

update of strategy

Question:

How the underlying topology of the interactions affects the emergence of cooperation/synchronization?

Question:

How the underlying topology of the interactions affects the emergence of cooperation/synchronization?

Answer

We consider three different topologies: ER Erdős-Rényi random graphs RGG Random Geometric Graph BA Barabási-Albert scale-free

Note:

All nets have N = 1000 and $\langle k \rangle = 8$

• Santos, F., et al. (2006). Proceedings of the National Academy of Sciences, 103, 3490-3494.

• Gómez-Gardeñes, J., et al. (2007). Physical Review Letters, 98, 34101.

Lower bound
$$\lambda_{c} = \lambda_{c}^{MF} \frac{\langle k \rangle}{\langle k^{2} \rangle}$$

- Arenas, A., et al. (2008). Physics Reports, 469, 93-153.
- Ohtsuki, H. et al. (2006). Nature, 441, 502-505.

Lower bound
$$\lambda_c = \lambda_c^{MF} rac{\langle k
angle}{\langle k^2
angle}$$

Upper bound

$$\frac{\Delta b}{\Delta c} = \frac{b_{Coop} - b_{Def}}{c} > \langle k \rangle$$

$$\frac{\sqrt{2 \left[1 + \sin(\varepsilon \lambda)\right]} - \sqrt{2}}{\varepsilon \lambda \langle k \rangle} \pi > \alpha .$$

• Arenas, A., et al. (2008). Physics Reports, 469, 93-153.

• Ohtsuki, H. et al. (2006). Nature, 441, 502-505.

Three regimes of relative cost: $\alpha = 10^{-3}$ Cheap $\alpha = 10^{-1.4}$ Medium $\alpha = 10^{0}$ Expensive

Take home messages

Coevolutionary model (Evolutionary Kuramoto's Dilemma) based on synchronization and evolutionary game theory.

• Anderson, P. W. (1972). More Is Different. Science, 177, 393-396.

Take home messages

Role of the underlying topology in the emergence of cooperation/synchronization.

Take home messages

 Sumpter, D. J. T. (2006). The principles of collective animal behaviour. Phil. Trans. Roy. Soc. B: Biological Sciences, 361, 5–22.

Acknowledgements

Alberto Antonioni

Univ. Carlos III Madrid

Acknowledgements

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

Grants no. CRSII2_147609 P2LAP1-161864

Acknowledgements

Extra contents

Microscopic behaviour in RGG

Microscopic behaviour in RGG

Microscopic behaviour in RGG

Other update rules

Asynchronous Fermi

Other update rules

Synchronous Imitation of the best

Fermi's Rule

