Co-evolution of strategies and update rules in the prisoner's dilemma game on complex networks

Alessio Cardillo

Department of Physics of Condensed Matter – University of Zaragoza and Institute for Biocomputation and Physics of Complex Systems (BIFI), Zaragoza, Spain http://bifi.es/~cardillo/

Thursday 14 April 2011, Department of Physics of Condensed Matter, Zaragoza, Spain

- Introduction
- Game theory
- Update Rules
- Complex Networks
- Results
- Conclusions

Introducing myself ...

Actually I am working on ...

- Dynamical processes on networks;
- Evolutionary game theory on networks;
- Emergence of collective behaviours (i.e. cooperation);

http://bifi.es/~cardillo/

A. Cardillo (Univ. of Zaragoza)

Co-evol. of strategy & update rule in PD games

Co-evolution of strategies and update rules in the prisoner's dilemma game on complex networks

Alessio Cardillo $^{\rm l}$, Jesús Gómez-Gardeñes 2,3,6 , Daniele Vilone $^{\rm 4}$ and Angel Sánchez 3,4,5

Published on: New Journal of Physics - 12, 103034, 2010

Angel Sánchez: Dept. of Mathematics, University Carlos III, Madrid, Spain Jesús Gómez-Gardeñes: Dept. of Physics of Condensed Matter and BIFI, Zaragoza, Spain

Daniele Vilone: Dept. of Mathematics, University Carlos III, Madrid, Spain

Introduction to Prisoner's Dilemma (PD) game

Situation: Two bank robbers have been arrested

A. Cardillo (Univ. of Zaragoza)

Introduction to Prisoner's Dilemma (PD) game

From a mathematical point of view we can *describe* the game through the payoff matrix as:

$$\begin{array}{ccc} C & D \\ C & \left(\begin{array}{cc} \mathcal{R} & \mathcal{S} \\ \mathcal{T} & \mathcal{P} \end{array} \right) & \text{ such that: } \mathcal{T} > \mathcal{R} > \mathcal{P} > \mathcal{S} \, . \end{array}$$

Introduction to Prisoner's Dilemma (PD) game

From a mathematical point of view we can *describe* the game through the payoff matrix as:

$$\begin{array}{ccc} C & D \\ C & \left(\begin{array}{cc} \mathcal{R} & \mathcal{S} \\ \mathcal{T} & \mathcal{P} \end{array} \right) & \text{ such that: } \mathcal{T} > \mathcal{R} > \mathcal{P} > \mathcal{S} \, . \end{array}$$

Nash equilibrium

The Nash equilibrium of PD game is the defection state. The problem with Nash equilibrium is that:

- Players are not "smart" (they are not able to calculate the Nash equilibrium);
- Playert do not have "full knowledge" (they do not know the structure of payoff matrix);

Game theory is not enough

- In general, people do not play only once but many times;
- They learn after each round and try to choose a strategy which ensure them the best success in the next one (payoff driven selection);
- Humans are not always "fully rational" because sometimes they make counterituitive choices;

Game theory is not enough

- In general, people do not play only once but many times;
- They learn after each round and try to choose a strategy which ensure them the best success in the next one (payoff driven selection);
- Humans are not always "fully rational" because sometimes they make counterituitive choices;

Evolutionary game theory

These objections could find a solution under the evolutionary game theory postulated by Maynard Smith and Price in 1973.

Game alone is not enough

Once player's strategies are defined, one has to define also how players update their strategies during the game, i.e. their Update Rules.

Definitions

Replicator Dynamics (REP): Each agent *i* chooses one of his neighbors at random, say *j*, and compares their payoffs. If $f_j > f_i$ agent *i* will copy strategy and update rule of *j* with probability:

$$\Pi \propto f_j - f_i \, .$$

Definitions

Replicator Dynamics (REP): Each agent *i* chooses one of his neighbors at random, say *j*, and compares their payoffs. If $f_j > f_i$ agent *i* will copy strategy and update rule of *j* with probability:

$$\Pi \propto f_j - f_i \,.$$

Unconditional Imitator (UI): Each agent *i* looks at all his neighbors *j*, choose the one with the highest payoff and if $f_j > f_i$ he will copy both strategy and update rule of *j* or maintains its own otherwise.

Definitions

Replicator Dynamics (REP): Each agent *i* chooses one of his neighbors at random, say *j*, and compares their payoffs. If $f_j > f_i$ agent *i* will copy strategy and update rule of *j* with probability:

$$\Pi \propto f_j - f_i$$
.

Unconditional Imitator (UI): Each agent *i* looks at all his neighbors *j*, choose the one with the highest payoff and if $f_j > f_i$ he will copy both strategy and update rule of *j* or maintains its own otherwise.

Moran Rule (MOR): Each agent *i* chooses one of his neighbors proportionally to his payoff and changes his state to the one of the chosen one.

In particular:

- REP \longrightarrow is stochastic with partial information;
- UI → is deterministic with full information;
- MOR → is stochastic with full information;

Update Rules

An example:

Interaction patterns

Once the game is fully set-up, we have to decide how the players interact between them. Mean-field and regular lattices are two paradigmatic examples but complex topologies are best suited to represent a real-scenario.

Complex Networks

Two of the most common topologies used are: Scale Free (SF) and Erdős-Rényi (ER) graphs.

A. Cardillo (Univ. of Zaragoza)

Complex Networks

Erdős-Rényi & Lattice

G. Abramson and M. Kuperman, PRE, **63**, 030901(R) (2001)

F.C. Santos and J.M. Pacheco, PRL, **95**, 098104 (2005)

Complex Networks

Scale-free networks are very important because many real systems display such kind of structure.

Interaction patterns

In order to consider topologies spanning from ER networks to SF ones, we used the Interpolation Model of Gardeñes *et al.*

J. Gómez-Gardeñes and Y. Moreno, Phys. Rev. E - 73 056124, 2006

• Papers in literature show that the outcome of evolutionary game on complex networks, in terms of cooperative behavior, strongly depends on topology but also on the update rule used.

- Papers in literature show that the outcome of evolutionary game on complex networks, in terms of cooperative behavior, strongly depends on topology but also on the update rule used.
- Since there are not any a-priori reasons to fix the update rule or to impose one over the others, we treat update rule in the same manner as strategy: we let it evolve, allowing the system itself choose what he "likes" most.

- Papers in literature show that the outcome of evolutionary game on complex networks, in terms of cooperative behavior, strongly depends on topology but also on the update rule used.
- Since there are not any a-priori reasons to fix the update rule or to impose one over the others, we treat update rule in the same manner as strategy: we let it evolve, allowing the system itself choose what he "likes" most.
- We want to see if the coexistence of different update rules, in association with different underlying topologies, changes the overall cooperative behavior present in literature.

Experimental setup

Game: Weak Prisoner's Dilemma with payoff-matrix given by:

 $\begin{array}{ccc} & C & D \\ C & \begin{pmatrix} 1 & 0 \\ b & 0 \end{pmatrix} & \text{ with } b \in [1,2] \ .$

Update Rule: REP, UI, MOR;

```
Topologies: SF (\alpha = 0), Intermediate (\alpha = 0.5), ER (\alpha = 1)
N = 5000 and \langle k \rangle = 6;
```

Other information:

- Pairwise game with two different update rules per "realization";
- Initial fraction of players with a certain rule x_{rule}(0) ∈ [0, 1];
- Initial fraction of cooperators and defectors $f_C(0) = f_D(0) = 0.5$;
- Payoff does not accumulate through gaming and the update of the strategies is synchronous.
- Dynamic evolution of the system = 4000 game rounds;
- All simulations averaged over 100 different realizations for each set of parameters;

Results are analyzed looking at the behavior of two quantities (with respect to the temptation parameter *b*):

• Average cooperation level in the asymptotic regime $\langle C \rangle = \frac{n_C}{N}$;

Results are analyzed looking at the behavior of two quantities (with respect to the temptation parameter b):

- Average cooperation level in the asymptotic regime $\langle C \rangle = \frac{n_C}{N}$;
- Average final fraction of players with a certain rule $\langle x_{rule} \rangle = \frac{n_{rule}}{N}$.

MOR vs UI

REP vs UI

Conclusions

- Evolutionary dynamics on networks is very different from the mean-field problem;
- Evolution on Scale-Free networks allows survival of cooperation even when the temptation to defect is relatively high;
- Co-evolution shows that is possible to obtain relatively large cooperation values when two update rule coexist in contrast with the single rule case. In particular we observe this in:
 - + REP vs UI in ER networks;
 - + MOR vs UI in SF networks;

Conclusions

Conclusions

- Evolutionary dynamics on networks is very different from the mean-field problem;
- Evolution on Scale-Free networks allows survival of cooperation even when the temptation to defect is relatively high;
- Co-evolution shows that is possible to obtain relatively large cooperation values when two update rule coexist in contrast with the single rule case. In particular we observe this in:
 - + REP vs UI in ER networks;
 - + MOR vs UI in SF networks;

Further Developments

- Consider different time scales for the game and change of the update rule processes;
- Study the scenario in which three rules are used simultaneously;
- Consider the use of other update rules (eg. Fermi rule) and/or other games (eg. Stag Hunt);

Interpolation Model

Start with a seed network with m_0 nodes fully connected between them;

Interpolation Model

- Start with a seed network with m₀ nodes fully connected between them;
- Solution Add $U = N m_0$ nodes, each with $m \le m_0$ links;

Details on the interpolation model

Interpolation Model

- Start with a seed network with m₀ nodes fully connected between them;
- 3 Add $U = N m_0$ nodes, each with $m \le m_0$ links;
- Each link has a probability α to be attached *randomly* to one of the N 1 other nodes, and a probability 1 α to be attached using the preferential attachment model of Barabasi and Albert;

Details on the interpolation model

