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1 Introduction

Networks are all around us, and we are ourselves, as individuals, the

unit of a network of social relationships of different kinds and, as biolog-

ical systems, the delicate result of a network of biochemical reactions.

Networks can be tangibile objects in the Euclidean space, such as elec-

tric power grids, the Internet, highway or subway systems, and neural

networks. Or they can be entities defined in an abstract space, such as

networks of acquaintances or collaborations among individuals.

Historically, the study of networks has been mainly the domain of

a branch of discrete mathematics since its birth in 1736, when Leonard

Euler published the solution to the Könisberg bridge problem (it con-

sisted in finding a round trip that traversed each of the Könisberg’s

bridges exactly once; cf. Fig 1(a)), this theory is known as graph the-

ory. Graph theory has developed and has provided answers to a series

of practical questions such as: what is the maximum flow per unit time

from source to sink in a network of pipes? How to assing n jobs to n

people with maximum total utility? In addition, the study of networks

has seen important achievements in some specialized contexts such as

social sciences.

(a) (b)

Figure 1: A schematic view of the Könisberg bridge: (a) map view and (b)
corrisponding graph.
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The last decade has known the birth of a new movement of inter-

est and research in the study of complex networks, i.e. networks whose

structure is irregular, complex and dynamically evolving in time, with

a renewed attention to the properties of networks of dynamical units.

This flurry of activity has been triggered by two seminar papers: one by

Watts and Strogatz on small-world network appeared in 1998 in “Na-

ture” [1], and one by Barabàsi and Albert on scale-free networks ap-

peared in 1999 in “Science” [2]. The main character of this activity

was the physicists’ community. They were induced by the possibility

to study the properties of a plenty of large databases of real networks.

These include transportation networks, phone call networks, the Inter-

net and the World Wide Web, the actors’ collaboration network in movie

databases, neural or genetic networks, metabolic and protein networks,

scientific coauthorship and citation networks from the Science Citation

Index.

This thesis shows some results concerning the topological features

of networks based on the collaboration among scientists, physicists in

particular. The study of some basic characteristics, such as the degree

and the clustering coefficient joined with the centrality indexes such as

betweenness and closeness, allows a deeper comprehension of the inner

stucture of these networks and the individuation of key role played by

people using an objective criterion. Moreover, another goal of this thesis

is to illustrate some techniques used to analyze social networks and dis-

cuss their applications. Following previous works by Newman [3, 4, 5, 6],

and Barabási et al. [7], our networks are constructed by considering two

scientists connected if they have coauthored one or more preprints to-

gether in the same year. In particular, we focus on the Los Alamos

preprint database http://xxx.lanl.gov/ in the period from 2000 to

2005, in order to study how the pattern of collaborations have changed

over time in recent years. This thesis is based on the paper of Cardillo

et al. [8] that is going to appear in Physica A (in press at the time of

writing).
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1.1 Social Networks

A social network is defined by a set of actors, mostly individuals or orga-

nizations, and a set of ties between couples of actors. It describes how the

actors are connected through various social relationships ranging from

casual acquaintance to close family bounds [9, 10]. Social network anal-

ysis has emerged as a key technique in modern sociology, anthropology,

social psychology and organizational studies.

Research in a number of academic fields has demonstrated that social

networks operate on several levels, from families up to nations, and play

a critical role in determining the way problems are solved, organizations

are run, and the degree to which individuals succeed in achieving their

goals. The shape of the social network helps determining a network’s

usefulness to its individuals Fig. 2.

Figure 2: An example of social network, the Zachary Karate Club social
network [11].

It is interesting to apply these considerations to Scientific Collabora-

tion Networks (referred below as SCNs from now on), a particular kind

of social networks whose actors are scientists and the investigated rela-

tionships are scientific collaborations. One way to define the existence of

a scientific collaboration is through scientific publications: two scientists
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are considered connected if they have coauthored one or more publica-

tions together. As indicated in Refs. [3, 4, 5, 6], this appears to be a

useful and reasonable definition of scientific acquaintance, for people who

have been working together will know each other quite well and are more

likely to set up a continuative collaboration and therefore contribute to

spread knowledge, particularly if two related scientists belong to different

fields (e.g. physics and computer science). Furthermore, data related to

coauthorships can be easily found on the huge publication records that

are now accessible on the Internet, and offer one of the largest and most

precise database to date on social networks. Focusing on SCN by using

data extracted from the publication records is not a new topic: one of the

most famous result of this interest is the Erdös number (see, for instance,

the Erdös Number Project http://www.oakland.edu/enp/), which is a

number assigned to each mathematician, indicating the number of steps

in the shortest path to the incredibly prolific Hungarian mathematician

Paul Erdös on the relative SCN.

2 Graphs

For a greater comprehension of the results obtained, it is necessary to

introduce some definitions and notations. Definitions are related with

the characterization and modelling of the structural properties of a net-

work. Graph theory [12, 13, 14] is the natural framework for the exact

mathematical treatment of complex networks and, formally, a complex

network can be represented as a graph. An undirected (directed) graph

G = (N ,L) consist of two sets N and L , such that N 6= ∅ and L is

a set of unordered (ordered) pairs of elements of N . The elements of

N ≡ {n1, n2, . . . , nN} are the nodes (or vertices, or points) of the graph

G, while the elements of L ≡ {l1, l2, . . . , lk} are its links (or edges, or

lines). The number of elements in N and L are denoted by N and K, re-

spectively. Then, later, a graph will be indicated as G(N, K) = (N ,L),

or simply G(N, K) or GN , whenever it is necessary to emphasize the

number of nodes and links in the graph. A powerful way to represent
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a graph is the adjacency (or connectivity) matrix A, a N × N square

matrix whose entry aij (i, j = 1, . . . , N) is equal to 1 when the link lij
exists, and zero otherwise. However, many real networks display a large

heterogeneity in the capacity and intensity of connections. Examples

are the diversity of predator-prey in food webs, passengers in airline

networks, and the existence of weak ties between individuals in social

networks [15, 16, 17, 18]. These systems can be better described in terms

of weighted networks, i.e. networks in which each link carries a numerical

value measuring the strength of the connection. In this sense a new set

W ≡ {w1, w2, . . . , wK} must be considered. With this new position a

graph G is defined as: GW = {N ,L,W}.

2.1 Topological characteristics

When weighted networks are considered, it is useful to represent them

using another matrix over the adjacency one. In these cases it is useful

to consider a weight matrix W, a N × N square matrix whose entry

wij (i, j = 1, . . . , N) is equal to the link weight. This study focuses

on the topological characteristics of network based on SCN data. This

means that our networks are all unweighted and the weight of each link

wi,j is described as:

wi,j =

{

1, if the edge between nodes i and j exists,

0, otherwise.

In this context, it is important to define some quantities to help the

estimation of these characteristics.

2.1.1 Node degree, degree distribution, and correlation

The degree (or connectivity) ki of a node i is the number of edges

incident with it. It is defined in terms of the adjacency matrix A as:

ki =
∑

j ∈N

aij. (1)
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The most basic topological characterization of a graph G can be ob-

tained in terms of the degree distribution P (k), defined as the proba-

bility that a node uniformly chosen at random has degree k. The degree

distribution completely determines the statistical properties of uncor-

related networks. A large number of real networks are correlated in

the sense that the probability that a node of degree k is connected to

another node of degree, say k′, depends on k. In these cases, it is nec-

essary to introduce the conditional probability P (k′|k), defined as

the probability that a link from a node of degree k points to a node

of degree k′. P (k′|k) satisfies the degree detailed balance condition

kP (k′|k)P (k) = k′P (k′|k)P (k′) [19, 20]. For uncorrelated graphs, the

balance condition gives P (k′|k)P (k) = k′P (k′)/〈k〉. Instead of using

conditional probability, due to finite size problems, it is possible to de-

fine the average nearest neighbours degree of a node i as:

knn,i =
1

ki

∑

j ∈Ni

kj =
1

ki

N
∑

j=1

aijkj (2)

where the sum runs on the nodes belonging to Ni, the set of nearest

neighbours of i. The average nearest neighbours degree may be expressed

in terms of conditional probability using definition (2) as:

knn(k) =
∑

k′

k′P (k′|k). (3)

Correlated graphs are classified as assortative if knn is an increasing

function of k, whereas they are referred to as disassortative when

knn is a decreasing function of k [21]. In other words, in assortative

networks the nodes tend to connect to their connectivity peers, while

in disassortative networks nodes with a lower degree are more likely

connected with highly connected ones.

2.1.2 Clustering

Clustering, also known as transitivity, is a typical property of acquain-

tance networks, where two individuals with a common friend are likely
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to know each other [9]. This can be quantified by defining the transitiv-

ity T of the graph as the relative number of triples, i.e. the fraction of

connected nodes which also form triangles. An alternative possibility is

to use the graph’s clustering coefficient C, a measure introduced by

Watts and Strogatz [1] defined as follows. A quantity ci (local clustering

of node i) is introduced, expressing how likely ajm = 1 for two neighbors

j and m of node i. Its value is obtained counting the number of edges

(denoted by ei) in the subgraph Gi of node i neighbours. The local clus-

tering coefficient is defined as the ratio between ei and ki(ki − 1)/2, the

maximum possible number of edges in Gi:

ci =
2ei

ki(ki − 1)
=

∑

j,m aijajmami

ki(ki − 1)
. (4)

The clustering coefficient of the graph C is the average of ci over all

nodes in G:

C ≡ 〈c〉 =
1

N

∑

j ∈N

ci. (5)

By definition, 0 6 ci 6 1, and 0 6 C 6 1. It is also useful to consider

c(k), the clustering coefficient of a connectivity class k, which is defined

as the average of ci over all nodes with degree k.

2.2 Centrality indexes

In order to identify the key role playing subject in a network, many differ-

ent centrality indexes and measures have been defined. These quantities

allow to estabilish some criteria for comparison analysis of network, and

thus making their study easier for the researchers. Some of these quanti-

ties were initially introduced to quantify the importance of an individual

in a social network [9].

2.2.1 Shortest path lengths, diameter and betweenness

The shortest path plays an important role in transport and communi-

cation within a network. Suppose one needs to send a data packet from
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one computer to another through the Internet: the geodesic or shortest

path is the shortest path connecting two nodes (in an unweighted net-

work the minimum number of hops to reach node j from i). Geodesics

provide optimal path way, since one would achieve a fast transfer and

save of system resources. For such a reason, shortest paths have also

played an important role in the characterization of the internal struc-

ture of a graph [9]. It is useful to represent all the shortest path lengths

of a graph G as a matrix D in which the entry dij is the length of the

geodesic from node i to node j. The maximum value of dij is called the

diameter of the graph. A measure of the typical separation between

two nodes in the graph is given by the average shortest path length ,

also known as the characteristic path length , defined as the mean of

geodesic lengths over all couples of nodes [22, 9].

L =
1

N(N − 1)

∑

i,j ∈N , i6=j

dij. (6)

A problem arising from the above definition is that L diverges if there

are disconnected components in the graph. One possibility to avoid such

a divergence is to limit the summation in Eq. (6) only to pairs of nodes

belonging to the largest connected component, or giant component .

An alternative and in many cases, useful approach is to consider the har-

monic mean of geodesic lengths, and to define the so-called efficiency

of G as [17, 23]:

E =
1

N(N − 1)

∑

i,j ∈N , i6=j

1

dij

. (7)

Such quantity is an indicator of the traffic capacity of a network, and

avoids the divergence in Eq. (6), since any pairs of nodes belonging

to disconnected component of the graph yields a contribution equal to

zero to the summation in Eq. (7).

The communication of two non-adjacent nodes, say j and k, depends

on the nodes belonging to the paths connecting j and k. Consequently,

a measure of the relevance of a given node can be obtained by count-

ing the number of geodesics going through it, and defining the so called
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node betweenness . Together with degree and closeness of a node

(defined as the inverse of the average distance from all other nodes), the

betweenness is one of the standard measure of node centrality, originally

introduced to quantify the importance of an individual in a social net-

work [9]. More precisely, the betweenness bi of a node i is defined as

[9, 24, 25]:

bi =
∑

j,k∈N ,j 6=k

njk(i)

njk

. (8)

where njk is the number of shortest paths connecting i and k, while njk(i)

is the number of shortest paths connecting i and k and passing through

i. The concept of betweenness can be extended also to edges. The edge

betweenness is defined as the number of shortest paths between pairs

of nodes which run through that edge [15].

3 Scientific Coauthorship Network

A large number of papers have been written about social networks

[26, 27, 28, 29], and in particular about scientific collaboration networks.

A social network is defined by a set of actors, and a set of ties. It de-

scribes how actors are connected through various social relationships

ranging from casual acquaintance to close family bounds [9]. Research

in a number of academic fields has demostrated that social networks

operate on many levels and play a critical role in determining the way

problems are solved, organizations are run, and the degree to which indi-

viduals succeed in achieving their goals. The shape of the social networks

helps determinig a network’s usefulness to its individuals. Networks with

many weak ties [18] are more likely to introduce new ideas and oppor-

tunities to their members than closed networks with many redundant

ties. That is to say that tight groups of friends share the same knowl-

edge and opportunities, while a group of individuals with connections to

other social worlds is likely to have few connections to a variety of net-

works rather than many connections within a single network. Similarly,
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individuals can exercise influence or act as brokers within their social

networks by bridging two networks that are not directly linked [3, 30].

3.1 Introduction

These considerations can be interestingly applied to Scientific Coauthor-

ship Networks or SCN, a particular kind of social networks whose actors

are scientists and the investigated relationships are scientific collabora-

tions. One way to define the existence of a scientific collaboration is

through scientific publications: two scientists are considered connected

if they have coauthored one or more publications together. This appear

to be a useful and reasonable definition of scientific aquaintance, because

people who have been working together will know each other quite well

and are more likely to set up a continuative collaboration and therefore

contribute to spread knowledge, particularly if two related scientist be-

long to different fields (i.e. physics and computer science). Furthermore,

data related to coauthorship can be easily found on the huge publica-

tion records that are now accesible on the Internet, and offer one of the

largest and most precise database to date on social networks. Focusing

on SCN by using data extracted from the publication records is not a

new topic: one of the most famous results of this interest is the Erdös

number on web at http://www.oakland.edu/enp/, which is a number

assigned to each mathematician indicating the number of steps in the

shortest path to the incredibly prolific Hungarian mathematician Paul

Erdös on the relative SCN.

3.2 SCN Based on Los Alamos Archive

Here a study of a SCN constructed by using data drawn from the Los

Alamos e-Print Archive at the website http://xxx.lanl.gov/ is pre-

sented. In particular, the sub archives considered are:

• Condensed Matter [ cond-mat ] ;

• General Relativity and Quantum Cosmology [ gr-qc ] ;
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• High Energy Physics - Experiment [ hep-ex ] ;

• High Energy Physics - Lattice [ hep-lat ] ;

• High Energy Physics - Phenomenology [ hep-ph ] ;

• High Energy Physics - Theory [ hep-th ] ;

• Mathematical Physics [ math-ph ] ;

• Nuclear Experiment [ nucl-ex ] ;

• Nuclear Theory [ nucl-th ] ;

• Physics [ physics ] ;

• Quantum Physics [ quant-ph ] ;

Following previous works by Newman and Barabàsi et al. [3, 4, 7],

these networks are constructed by considering two scientists connected

if they have coauthored one or more preprints together in the same

year. In particular, two different kinds of analysis are made: time-series

topological analysis during the period 2000 - 2005, and one year (2005)

topological analysis. The former has been made on cond-mat , hep-ex

and hep-ph ; the latter has been made on the others archives.

One could ask “Why use a database of preprints instead of regular

articles ones?” The reason is that in preprint archives, articles published

(or unpublished) in different magazines are stored. Such systems allow

a better view of the scientific collaboration background, thus making

results more affordable and general.

In order to analyze the structure of SCN networks, it is necessary to

find a database where one can get data from preprint databases. There

are several databases available on the net where to find such data. An

example is the Stanford Public Information Retrieval System (SPIRES),

a database of preprints and published papers in high-energy physics,

both theoretical and experimental. Another example is the Networked
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Computer Science Technical Reference Library (NCSTRL), a database

of preprints in computer science, submitted by participating institutions

and stretching back about fifteen years.

The Los Alamos e-Print Archive is a database containing unrefer-

eed preprints in physics, self-submitted by their authors, running from

1992 to the present. This database is subdivided into specialities within

physics, such as condensed matter and high energy physics. Los Alamos

has been chosen for data collection because it gives the widest view

upon the physicist communities since 1992. To be exact, Los Alamos

provides open access to 379,778 e-prints in Physics, Mathematics, Com-

puter Science and Quantitative Biology so it could be used to analyze

communities different from the physicists’ one.

4 Data

The study of the SCN based networks is based on the data collected

from Los Alamos archive. Two steps have been done in order to obtain

results discussed in Section 5. First, data were collected and then they

have been analyzed. In the following these two steps are discussed.

4.1 Data collecting

The data collected for this study is taken from the website of Los Alamos

archive. Once selected, the chosen (for example cond-mat), a JAVATM

program is used to make a parsing of the HTML web pages code of

each year in order to extract information about authors and then build

an adjacency list, used to generate all the results in this work, and a

match list used to associate at each node ID a key on the database. The

match list and the adjacency list are made using the database analysis

technique of associative array [31]. An example of the data structure

provided by this programme is shown below:

14



1 2 −−−−−−−−−→ adjacency list

1 Ko −−−−−→ (Japanese for this)

2 Otsu −−−−→ (Japanese for that).

As discussed above, two kinds of data analysis have been performed. For

this reason two “different” kinds of data have been collected. The reason

for making a graph for each year is both conceptual and computational.

In fact in order to study the evolution of the topological characteristics it

is necessary to have more graphs at different times. The longer the time

period between two graphs, the more accurate the is study. However, a

too large graph (a graph with many nodes and links) makes computa-

tions very slow. Therefore a good compromise to balance these two is

to get a single year data graph. Once data have been collected, various

algorithms have been run on them. For example, Djikstra alghorithm

[32] to calculate the shortest path, or the associative array to create the

corrispondency list. Tables from 1 – 4 contain all the topological data

for that archive/year.

An important thing to note is that the databases include also the

cross listings papers (and authors). Such papers do not belong directly

to the archive considered, but they are listed there and so they have

been included in the analysis. As we can see, each archive has a proper

structure and a characteristic that may be found by considering the

whole results or only a few of them. For example, the small size of the

giant component in the gr-qc or math-ph archives indicates that such

communities are divided in a lot of sub communities. Another example

is given by the high mean degree of nucl-ex archive. This is due to the

fact that a lot of people are involved in nuclear physics experiments, so

papers have a large number of authors.

4.2 Multiple author problem

The first thing that has to be said is that a background problem (error)

affects results. This error is due to the fact that in the database each
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2000 2001 2002 2003 2004 2005

Tot. papers 6581 7616 8395 9096 9882 10220
(cross listings) (556) (600) (627) (728) (862) (985)
Mean authors

per paper
2.94 3.20 3.11 3.23 3.32 3.37

N 9077 11013 12125 13377 14732 15964
K 21971 31539 32643 38399 44141 48443
〈k〉 4.79 5.73 5.38 5.72 5.96 6.07
kmax 92 84 84 89 101 86
S(%) 58.5 66.3 61.5 66.7 69.6 69.5
D 35 23 31 27 23 22
〈 l 〉 3.18 3.54 3.28 3.54 3.66 3.62
E 0.043 0.062 0.051 0.063 0.071 0.071
C 0.69 0.71 0.71 0.72 0.72 0.73

Table 1: Basic properties of coauthorship graphs of cond-mat archive in the
period 2000-2005. Here, it is reported the number of papers, the average
number of authors per paper, the number of nodes N , the number of links
K, the average degree (average number of links per node) 〈k〉, the maximum
degree kmax, the size S of the largest connected component (in percentage of
N), the diameter D, the characteristic path length 〈 l 〉, the global efficiency
E, and the clustering coefficient C.

author is related to an ID. This ID is mainly composed by the surname

and the first initial of the name of the author. For example:

Alessio Cardillo −−−−−−−−−→ Cardillo A

Alessio Vincenzo Cardillo −→ Cardillo A

This cause a multiple author assignment to a single ID with a conse-

quently misleading of results. To avoid this problem, another rule for ID

assignment has been created. It is a modification of the previous one in

the following sense: each ID is composed by the surname of the author

followed by all the capital letters of all its names. For example:

Alessio Cardillo −−−−−−−−−→ Cardillo A

Alessio Vincenzo Cardillo −→ Cardillo AV

16



gr-qc hep-lat hep-th math-ph nucl-ex nucl-th physics quant-ph

Tot. Papers 2670 861 4659 1881 717 1596 3326 3376
(cross listings) (1006) (197) (1419) (928) (256) (531) (566) (515)
Mean auth.

per paper
2.099 3.581 2.127 1.896 6.261 2.932 2.974 2.632

N 2047 798 3537 1223 2054 1528 5616 3855
K 4169 2928 4382 929 23786 3431 18285 8199
〈k〉 4.033 7.338 2.409 1.519 23.161 4.499 6.433 4.256
kmax 60 51 15 9 107 27 84 54
S(%) 22.03 73.81 31.83 2.94 70.69 47.51 3.79 43.53
D 26 12 27 12 15 22 11 18
〈 l 〉 0.488 2.752 1.035 0.008 3.023 1.950 0.012 1.300
E (10−2) 0.866 12.8 1.21 0.185 10.77 3.466 0.232 3.201
C 0.503 0.672 0.488 0.341 0.864 0.669 0.730 0.617

Table 2: Basic properties of coauthorship graphs. Here is reported the number of paper, the average number of
authors per paper, number of nodes N , number of links K, the average degree 〈k〉, the maximum degree kmax, the
size S of the largest connected component (in percentage of N), the diameter D, the characteristic path length 〈 l 〉,
the global efficiency E, and the clustering coefficient C.
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2000 2001 2002 2003 2004 2005

Tot. papers 1079 1203 1211 1175 1333 1261
(cross listings) (343) (385) (413) (404) (448) (406)
Mean authors

per paper
3.28 3.02 3.04 3.33 2.75 3.48

N 1470 1495 1604 1643 1405 1797
K 13268 12491 13865 14378 13444 20037
〈k〉 18.04 16.70 17.27 17.50 19.13 22.30
kmax 143 69 126 81 106 135
S(%) 13.67 9.03 44.45 10.77 13.59 39.23
D 9 12 12 7 6 8
〈 l 〉 10−2 9.067 6.505 94.458 7.018 8.265 57.195
E 10−2 2.142 1.643 5.714 1.769 2.341 5.779
C 0.722 0.691 0.670 0.735 0.649 0.744

Table 3: Basic properties of hep-ex archive coauthorship graphs in the pe-
riod 2000-2005. Here is reported the number of paper, the average number
of authors per paper, the number of nodes N , the number of links K, the
average degree (average number of links per node) 〈k〉, the maximum degree
kmax, the size S of the largest connected component (in percentage of N), the
diameter D, the characteristic path length 〈 l 〉, the global efficiency E, and
the clustering coefficient C.

However this method cannot solve two further problems. The first is that

even with this method two authors like Alessio Cardillo and Alessandro

Cardillo will have the same ID, Cardillo A . The second problem is that

some authors have more than a name but they do not use always both

in papers. For example Alessio Cardillo and Alessio Vincenzo Cardillo

are the same person (author of this thesis) but they will be identified as

Cardillo AV and Cardillo A, respectively. This fact is due to a wrong

policy of database mantainers, who do not provide a unique identifier

per authors (like MathSciNet does), and a lack of authors submission

rules in this sense.
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2000 2001 2002 2003 2004 2005

Tot. papers 5204 5357 5443 5179 5354 5148
(cross listings) (1080) (1131) (1198) (1215) (1216) (1229)
Mean authors

per paper
2.40 2.30 2.38 2.34 2.45 2.46

N 4178 4193 4277 4152 4322 4324
K 20599 10505 15983 10076 21591 15597
〈k〉 9.86 5.00 7.47 4.85 9.98 7.21
kmax 195 94 136 91 228 149
S(%) 58.47 57.19 57.59 53.23 60.46 57.42
D 21 24 22 25 17 22
〈 l 〉 2.212 2.569 2.189 2.319 2.213 2.266
E 0.064 0.049 0.060 0.041 0.072 0.058
C 0.608 0.571 0.594 0.596 0.608 0.620

Table 4: Basic properties of hep-ph archive coauthorship graphs in the pe-
riod 2000-2005. Here is reported the number of paper, the average number
of authors per paper, the number of nodes N , the number of links K, the
average degree (average number of links per node) 〈k〉, the maximum degree
kmax, the size S of the largest connected component (in percentage of N), the
diameter D, the characteristic path length 〈 l 〉, the global efficiency E, and
the clustering coefficient C.

4.3 Data analysis

The goal of the first type of data analysis is to calculate the topological

characteristics of all the graphs. Total number of authors, mean number

of authors per paper, number of nodes and links, mean and maximum

degree, clustering coefficient and so on are listed in tables 1–4. In order to

find assortative properties of these networks, degree–degree, clustering–

degree and degree–betweenness correlation have been studied. Results of

this analysis are explained in Section 5 and in Figs. 4 and 5. In addition,

even the cumulative distribution of degree , betweenness and closenes

have been studied to compare their characteristics with the ones found by

Newman [3, 4] and with the results of graph theory. The use the analysis

of multiple indexes allow a better identification of both structural and
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sociological characteristics. Indeed, the connectivity peers in assortative

networks may be also related with high betweeneess peers. Instead, the

relation between degree and clustering help to determine if peers have

their own sub communities or not. All these relations, combined with a

study of the centrality index, are very useful in social sciences.

Finally, the last kind of data analysis is focused on answering the

question of how to find the best connected authors in the SCN. In order

to quantify the importance of a node in the graph, different centrality

indices [9, 33] have been considered, namely the degree, the betweenness

(both node and edge) and the closeness. Using this method, the discov-

ery of the best connected authors is easier, and the result demostrates

the effectiveness of a centrality–based method. Indeed, in the ranked

lists it is easy to find names of important people in the scientific com-

munity. In addition, this result could be made even more reliable if we

consider weighted network. However, there is no unique procedure to

assign a weight to links. In fact, there are many ways to define a weight

for coauthorship networks. The ranked lists of authors over all these

indices can be found on: http://www.ct.infn.it/∼cardillo/.

5 Results

Since two different kinds of data have been collected, two different types

of analysis have been done on them. This leads to two different kinds

of results. One kind is related with time–series analysis, and one with

one–year data analysis. Here are presented all the results found for this

two kinds of data/analysis. However, it is worth to note that the best

kind of data/analysis is the time series one. Indeed, this method allows

a better comprehension of the characteristics of our networks and their

evolution during time.
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5.1 Time series results

The analysis of the data collected and the results found allows to infer

that many different kind of social structures and characteristics may

be found in the community of physicists. Indeed the time series data

analysis shows a community like cond-mat one that grows during the

pediod 2000–2005 as indicated by Figs. 3(a,b), showing that both the

number of nodes N (the number of different authors per year), and the

number of links K in the graph, increase over the years. The number

of scientists who submitted at least one paper to the cond-mat archive

has almost doubled in the period considered. This number is, in fact,
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Figure 3: (a) Number of nodes and (b) links per year for the three time
series archives cond-mat (diamonds), hep-ex (squares), hep-ph (circles)

.

equal to N = 9077 in year 2000, and equal to N = 15964 in 2005. Such

a behaviour is missing in the other two archives hep-ex (nodes) and

hep-ph. The reason of such a behaviour could be found in the different

time scale evolution of these two communities. In fact, high energy

physics experiments need a lot of time to be built and then started

(the construction of LHC will take more than 6 years !). On the other

hand, condensed matter physics needs more “smaller” equipments and

less time to build them. It would be interesting to look at the hep-ex

number of papers and authors after the LCH operations start to see if

these conclusions are correct or not.
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In this sense, the presence of the same authors in the centrality in-

dexes hit-lists for more than one year shows the same behaviour. For

instance, in the cond-mat degree-based list, this is the case of Y. Tokura

(present in each of the six years), J. Sarrao (five years), H. Eisaki (four)

and A. Revcolevschi (three). Some of the authors in the degree-based

top ten, as Y. Tokura and A. Revcolevschi, have also a very high value

of the betweenness. Conversely, there are authors in the top rank by

betweenness that do not appear among the ten nodes with the largest

degree: two examples are A. R. Bishop and S. D. Sarma. On the other

hand, in hep-ex hit-lists it is not possible to find the same author in

more than one year except for A. Bodek (two years). A similar be-

haviour can be noted even in hit-lists containing different names every

year. For hep-ph the situation is a mixture of the previous two. Is not

possible to find the same name in more than one year, but S. Heine-

meyer (four years) appears several times in the hit lists. However the

case of Heinemeyer is a stand-alone case in a structure that looks like

more to hep-ex than cond-mat. It is worth to note that the value of

the efficiency, clustering, mean and max degree increases in the period

considered for all of the three time series. Even assortative tendencies

are different for the different time series. In cond-mat, the degree corre-

lation can be investigated by plotting the average degree of the nearest

neighbours of nodes with degree k, knn(k), as a function of k, and by

measuring the numerical value of the slope, denoted in the following

as ν [34]. In Fig. 5, we show the cases for the year 2000 and the year

2005. The two graphs are slightly assortative, as denoted by the positive

slopes of the curves knn(k). This means that the nodes tend to connect

to their connectivity peers, i.e. authors with a high number of collab-

orators tend to collaborate with other highly connected authors. The

value of ν extracted is respectively equal to 0.005 in 2000, and to 0.006

in 2005. In general, ν shows a slow tendence to increase with time in the

years considered. The same behaviour is not evident for the other two

archives. In fact, even if for hep-ex a slightly assortativity tendence is

visible in the nearest neighbours average degree knn(k) given by values
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2000 2001 2002 2003 2004 2005

1 Eisaki H. Lee S. Lee S. Lee S. Lee S. Wang Y.
2 Revcolevscki A. Kim H. Kim H. Sasaki T. Yamada K. Lee S.
3 Uchida S. Thompson J. Sarrao J. Canfield P. Uchida S. Sarrao J.
4 Ueda Y. Cava R. Kim K. Tajima S. Ando Y. Tokura Y.
5 Shen Z. Revcolevscki A. Thompson J. Kim K. Vedeshwar A: Lee J.
6 Cheong S. Tokura Y. Kim J. Liu X. Chen C. Berger H.
7 Tokura Y. Wang Y. Takagi H. Kim H. Pfeiffer L. Gossard A.
8 Fisk Z. Sarrao J. Choi E. Furdyna J. West K. Nakatsuji S.
9 Kim Y. Pagliuso P. Maeno Y. Uchida S. Tokura Y. Maeno Y.
10 Kim C. & Sarrao J. Canfield P. Wang Y. Takagi H. Eisaki H. Pfeiffer L.

Table 5: The ten authors with the highest degree are listed for cond-mat archive, in order of rank, for each of the
six years considered. The number reported in each cell is the corresponding value of node degree.
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Figure 4: (a) Plots of betweenness degree correlation for cond-mat, (b)
hep-ex, (c) hep-ph.

of ν between 0.005 and 0.016, for hep-ph there is even a disassortative

tendence given by negative values of the slope ν −0.057 found for in 2004

Fig. 5. In both cases for the betweenness correlation it is not possible

to find a function that fits data as found in cond-mat. This is due to

the different structure of the degree distribution in these cases. However

plots confirm the presence of a correlation (in particular for hep-ph) as

is possible to see in Fig. 4.

5.2 One year data results

The results found for one–year data (Tab. 2) show a multitude of differ-

ent structures and behaviours. Indeed it is possible to find small well–
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Figure 5: Plots of nearest average degree–degree correlation for (a)
cond-mat, (b) hep-ex, (c) hep-ph.

connected sub–communities in archives such as math-ph and gr-qc (low

giant component, high clustering coefficient, low efficiency and char-

acteristc path length). Even large structured communities are found

(quant-ph, nucl-ex) with large giant component, mean and maximum

degree and clustering coefficient. These results denote the presence of

small well–connected groups that work alone in the first case, and large

well–connected and wide–collaborating structures in the second case.

A particular case is physics which shows “strange” characteristics. In

fact, the physics archive is one of the biggest communities. Nevertheless,

it shows a very fragmented structure as one may note looking at the giant

component size, diameter and characteristic path length. Such indexes

confirm the presence of a great number of small communities. However,
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clustering coefficient, efficiency and average degree indicate that sub–

communities are well self-connected. These results can be explained by

the fact that the physics archive is divided in twenty-two sub–archives

ranging from History of Physics, to Space Physics, thus making very

hard that such different communities could be well connected between

them.

Looking at the hit–lists, it is possible to find key role–playing actors.

However, it is not possible to say whether these people play a crucial role

in the community only for a year or more, because only one year has

been analyzed, so it is not possible to say if the archive’s structure looks

like either cond-mat or hep-ex or hep-ph. In addition, only in some

of these archives it is possible to identify key–role playing actors like C.

Vafa in hep-th, F. Zimmermann in physics, U.G. Meissner in nucl-th

and V. Vedral in quant-ph. Similar results could not be obtained for

math-ph gr-qc and nucl-ex. A particular case is that of U. Lombardo

(Catania’s physics department) who does not have a high degree but

appears in all the other centrality hit lists. This fact could be explained

in the following way. Professor Lombardo does not have a great number

of different collaborators but they belong to different “communities”. In

fact, Professor Lombardo’s collaborators are mainly Chinese and Euro-

pean people, so his function is to join these two different communities.

In this sense Professor Lombardo represents a “bridge” between Europe

and Asia like the ones over the Bosforo Straits.
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gr-qc hep-lat hep-th math-ph

1 Damour T. Orginos K. Vafa C. Joye A.

2 Buonanno A. Wenger U. Cvetic M. Sigal I.M.

3 Berti E. Heller U.M. Jejjala V. Merkli M.

4 Kokkotas K.D. Papinutto M. He Y.H. Froehlich J.

5 Stergioulas N. Schierholz G. Simon J. Stolz G.

6 Corichi A. Yamada N. Balasubramanian V. Stollmann P.

7 Macias A. Edwards R.G. Vandoren S. Muller P.

8 Quevedo H. McNeile C.N. Ahn C. Schlein B.

9 Cortez J. Schroers W. Vazquez Poritz J.F.P. Klein A.

10 Schnetter E. Zanotti J.M. Ross S.F. Naboko S.

nucl-ex nucl-th physics quant-ph

1 Brown B.A. Li B.A. Zimmermann F. Vedral V.

2 Berg A.M. Schwenk A. Chevallier M. Eisert J.

3 Steiner M. Lombardo U. Raimondi P. Dowling J.P.

4 Cortina D. Toki H. Kim D. Ralph T.C.

5 Carstoiu F. Oset E. Rohe T. Milburn G.J.

6 Coll. STAR Meissner U.G. Cremaldi L. Pan J.W.

7 Roberts D.A. Lynch W.G. Regenfus C. Zoller P.

8 Magestro D. Nunes F.M. Rozet J.P. Zhang J.

9 Nakamura T. Meng J. Smith S. Zanardi P.

10 Samanta C. Nogga A. Rubbia A. Paunkovic N.

Table 6: First ten authors sorted by their node betweenness for all the one
year sub archives.
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2000 2001 2002 2003 2004 2005

1 Frixione S. Boos E. Weiglein G. Anchordoqui L. Heinemeyer S. Heinemeyer S.
2 Seymour M.H. Roeck A.D. Heinemeyer S. Lokhtin I.P. Roeck A.D. Kalinowski J.
3 Ilyin V. Zerwas P.M. Hinchliffe I. Takai H. Balazs C. Hesselbach S.
4 Mangano M.L. Bigi I. Laenen E. Vogt R. Djouadi A. Hurth T.
5 Heinemeyer S. Battaglia M. Nason P. Petreczky P. Boos E. Ellis J.
6 Berger E.L. Miller D.J. Oleari C. Niemi H. Kramer M. Ali A.
7 Beneke M. Blumlein J. Logan H.E. Nikitenko A. Godbole R. Freitas A.
8 Richter Was E.W. Choi S.Y. Duca V.D. Arleo F. Barklow T. Abe T.
9 Brock R. Dittmaier S. Zeppenfeld D. Hashimoto S. Guasch J. Eberl H.
10 Baur U. Heuer R.D. Catani S. Eskola K.J. Moretti S. Kraml S.

Table 7: First ten authors sorted by their degree for the archive hep-ph in the period 2000–2005.
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6 Conclusions

In conclusion, the characterization of SCN networks using topological

properties and centrality indexes allows to identify the inner structure

of different physicist communities, thus delineating the main properties

of relative networks. The centrality indexes study permits to find the

key role–playing actors using an objective criterion. Results allow to say

that this is a good method. However, several problems were encountered

during data collecting and analysis. In particular, multiple author as-

signment cause errors in the networks construction and analysis. Maybe

in the future the policy in terms of authors identification will improve

making it possible to uniquely identify the authors.

In addition, a study of SCN networks in terms of weighted networks

may lead to results more similar with the real structure of scientific

community. However as discussed above, assigning a weight is not an

easy task. Indeed, many different issue have to be taken into account,

such as the number of authors for each paper (writing a paper with 3

people is different than writing a paper with other 20 people or more).

Even the number of papers written with the same person has to be taken

into account, because writing many papers with the same people denote

the presence of a strong relationship. On the other hand, a single paper

with a person indicate an occasional collaboration.

At any rate, social network analysis is in continuous development

and maybe these problems could be solved in future works.
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