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INTRODUCTION

Networks are all around us, and we are ourselves, as individuals, the

units of a network of social relationships of different kinds and, as bio-

logical systems, the delicate result of a network of biochemical reactions.

Historically, the study of networks started as the domain of a branch

of discrete mathematics known as graph theory, initiated in 1736, when

Leonard Euler published the solution to the Könisberg bridges problem

(it consisted in finding a round trip that traversed each of the Könis-

berg’s seven bridges exactly once; cf. Fig 1(a)). Since then, graph theory

has developed and has provided answers to a series of practical questions

such as: what is the maximum flow per unit time from source to sink

in a network of pipes? How to assing n jobs to n people with maxi-

mum total utility? In addition, the study of networks over the years has

seen important achievements in some specialized contexts such as social

sciences, immunology and computer science to cite a few.

The last decade has known the birth of a new movement of interest

and research in the study of complex networks, i.e. networks whose

structure is irregular, complex and dynamically evolving in time, with

a renewed attention to the properties of networks of dynamical units.

This flurry of activity has been triggered by two seminar papers: one
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Introduction

(a) (b)

Figure 1: A schematic view of the Könisberg bridges: (a) map view and (b)
corrisponding graph.

by Watts and Strogatz on small-world networks appeared in 1998 in

“Nature” [1], and one by Barabàsi and Albert on scale-free networks ap-

peared in 1999 in “Science” [2]. The main character of this activity was

the physicists’ community. They were induced by the possibility to study

the properties of a plenty of large databases of real networks. These in-

clude transportation networks, phone call networks, the Internet and the

World Wide Web, the actors’ collaboration network in movie databases,

neural or genetic networks, metabolic and protein networks, scientific

coauthorship and citation networks from the Science Citation Index and

so on. In fact, the growing availability of large databases togheter with

the increasing computing powers, as well as the development of reliable

data analysis tools, have constituted a better machinery to explore the

topological properties of several complex networks from the real world

[3–7].

The main outcome of this activity has been to reveal that, despite

the inherent differences, most of the real networks are characterized by

the same topological properties, as for instance relatively small charac-

teristic path lengths and high clustering coefficients (the so called

small-world property) [1], scale-free degree distributions [2], degree
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Introduction

correlations [8], and the presence of motifs [9] and community struc-

tures [10].

All such features make real networks radically different from regu-

lar lattices or random graphs, the standard topologies usually used in

modeling and computer simulations. This has led to a noticeable atten-

tion towards the comprehension of the evolution mechanisms that have

shaped the topology of a real network, and to the design of new models

retaining the most significant properties observed empirically.

Spatial networks are a special class of complex networks whose

nodes are embedded in a two or three-dimensional Euclidean space and

whose edges do not define relations in an abstract space (such as in net-

works of acquaintances or collaborations between individuals [11–14]),

but are real physical connections [6, 15]. Typical examples include neu-

ral networks [16], information/communication networks [17, 18], electric

power grids [19] and transportation systems ranging from river [20], to

airport [21, 22] and street [23] networks. Initially most of the works in

the literature, with a few relevant exceptions [17, 24, 25], have focused

on the characterization of the topological properties of spatial networks,

while the spatial aspect has received less attention, when not neglected

at all. However, it is not surprising that the topology of such systems

is strongly constrained by their spatial embedding and influenced by the

properties of the surrounding space. For instance, there is a cost to pay

for the existence of long-range connections in a spatial network, this hav-

ing important consequences on the possibility to observe a small-world

behavior. Moreover, the number of edges that can be connected to a

single node is often limited by the scarce availability of physical space,

imposing constraints on the degree distributions. In few words, spatial

networks are different from other complex networks and as such they

need to be studied in a different way.

In this thesis we focus on a particular class of spatial networks: net-
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Introduction

works of urban street patterns (c.f. Fig 2). We consider a database

of 1-square mile samples of different world cities and for each city we con-

struct a spatial graph. By construction, the resulting graphs are planar

graphs, i.e. graphs forming nodes whenever two edges cross. In this

thesis we present a comparative study of the basic properties of spatial

networks belonging to different city street patterns. The main results we

have obtained are presented in Chapters 3 and 4. In particular, in Chap-

ter 3, we evaluate the characteristics of the graphs both at a global and

at a local scale evaluating various quantities such as: efficiency [26, 27],

cost proportional to the sum of street lengths [27], number of different

motifs [28, 29]. In order to enable the classification and comparison of

different kinds of city layout we need to introduce a proper normalization

of the results.

The common procedure in relational (non-spatial) complex networks

is to compare the properties of the original graph derived from the real

system with those of some randomized versions of it, i.e. of graphs with

the same number of nodes and links as the original one, but where the

links are distributed at random. This is, for instance, the standard way

proposed by Watts and Strogatz in [1] to assess whether a real system is

a small world or not. The main problem with spatial graphs is that, in

most of the cases, random graphs are no more a good way to normalize

the results. In a planar graph, as those describing urban street patterns,

the randomized version of the graph is not significative because it is

almost surely a non-planar graph due to the edge crossings induced by

the random rewiring of the edges. Moreover, because of the presence

of long-range links, a random graph corresponds to an extremely costly

street pattern configuration.

The alternative is to compare urban street patterns with grid-like

structures. Using the method proposed by Buhl et al. in [24] as a starting

point, we have considered two particular kinds of planar graphs, i.e. the
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Figure 2: The urban street pattern graph of the city of Catania (Italy).
The colours represent the values of betweenness centrality for each
“street” where red means high values and blue low values of be-
tweenness.

minimum spanning tree and the greedy triangulation, induced by

the real distribution of nodes in the plane. Spanning tree and greedy

triangulation will serve as the two extreme cases to normalize the various

measures we have computed.

In Chapter 4 we deal with the typical problem of city planners. A

urban planner is intrested in how the land is used and on the distribution

of services and goods in the system with the main purpose of building

systems better than the previous ones. For this reason we have focused

on the issue of node centrality. In particular, we have set up a tool to

extract the backbone of a city by convoluting centrality with the city
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structure [30].and we have looked for a correlation between centrality

and density of retail activities to gain information about the localization

of retail activities.

From the physicists point of view, the study of networks of urban

street patterns is whorthful for at least two reasons: The possibility to

study particular man made networks as the geographical ones and the

opportunity to apply well known models and techniques (like percolation

or flux models to cite a few) to systems which are very different from the

ones studied usually. Part of the work presented in this thesis has been

published in Physical Review E [31], and in European Physical Journal

B [30] in 2006 and in Environment and and Planning B [32] in 2009.
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The thesis is organized in the following way:

• In Chap. 1 we present an introduction to the fundamental concepts

of graph theory and to all the main measures that we will use in

the following.

• In Chap. 2 we focus on the representation of a city as a graph

and on the techniques used to compare graphs of cities of different

kind. Here, we will introduce the concepts of minimum spanning

tree (MST) and greedy triangulation (GT).

• In Chap. 3 we present a list of all the analysis performed and of

the results obtained focusing on the study of both global and local

properties of the investigated graphs.

• Finally, in Chap. 4, after introducing various measures of centrality,

we discuss about the use of centrality analysis in networks of urban

patterns. In particular we discuss about possibility to enlight the

skeleton of a city and the relation between centrality and retail.

We introduce also a future development of all the work shown in

terms of dynamical evolution of the system.

7



CHAPTER 1

INTRODUCTION TO GRAPH THEORY

Many real-world situations can conveniently be described by means of

a diagram consisting of a set of points together with lines joining certain

pairs of these points. For example, the points could represent people,

with lines joining pairs of friends; or the points might be communication

centres, with lines representing communication links. Notice that in such

diagrams one is mainly interested in whether two given points are joined

by a line; the manner in which they are joined is immaterial. A mathe-

matical abstraction of situations of this type gives rise to the concept of

graph.

Graphs are so named because they can be represented graphically,

and it is this graphical representation which helps us understand many

of their properties. Each vertex is indicated by a point, and each edge by

a line joining the points representing its ends. There is no single correct

way to draw a graph; the relative positions of points representing vertices

and the shapes of lines representing edges usually have no significance.

However, we often draw a diagram of a graph and refer to it as the

graph itself; in the same spirit, we call its points “vertices” and its lines

“edges”. Most of the definitions and concepts in graph theory are sug-
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gested by this graphical representation. The ends of an edge are said

to be incident with the edge, and vice versa. Two vertices which are

incident with a common edge are adjacent, as are two edges which are

incident with a common vertex, and two distinct adjacent vertices are

neighbours.

However, sometimes drawing a graph is completely useless, especially

when the number of vertices and edges is very large. In fact, the big

number of connections and points could transform a brief clear sketch into

a complete mess. In addition, since positions of vertices are meaningless

the “properties” of such systems cannot be deduced only by a visual

analysis. This facts seems to limitate the range of validity of graph theory

as it has been described until now. Fortunately for us, mathematics

comes in our aid and provide a rigorous formalism under which all the

properties of a graph can be expressed. So, for a proper comprehension of

the results, it is necessary to introduce this common language providing

some definitions and notations.

Figure 1.1: An example of graph graphical representation.
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1.1 Fundamental Concepts

1.1 Fundamental Concepts

Let us start with the construction of the mathematical language used

to describe graphs and in particular their structural properties. Graph

theory [33–36] is the natural framework for the exact mathematical treat-

ment of complex networks and, formally, a complex network can be rep-

resented as a graph. An undirected (directed) graph G = (N ,L) is

a mathematical object which consists of two sets: N and L , such that

N 6= ∅ and L is a set of unordered (ordered) pairs of elements of N . The

elements of N ≡ {n1, n2, . . . , nN} are the nodes (or vertices, or points)

of the graph G, while the elements of L ≡ {l1, l2, . . . , lk} are its links

(or edges, or lines). The number of elements in N and L are denoted

by N and K, respectively. Then, later, a graph will be indicated as

G(N,K) = (N ,L), or simply G(N,K) or GN , whenever it is necessary

to emphasize the number of nodes and links in the graph.

A powerful way to represent a graph is the adjacency (or connectiv-

ity) matrix A, a N ×N square matrix whose entry aij (i, j = 1, . . . , N)

is equal to:

ai,j =

{

1, if the edge between nodes i and j exists,

0, otherwise.

2 3

41
Figure 1.2: A graph and its corre-

sponding adjacency ma-
trix A.

A =









0 1 0 1

1 0 1 1

0 1 0 1

1 1 1 0
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1.1 Fundamental Concepts

Certain types of graphs play prominent roles in graph theory. A

complete graph is a graph in which any two vertices are adjacent so it

has N(N−1)
2

edges.

However, many real networks display a large heterogeneity in the

capacity and intensity of connections. Examples are the electrical re-

sistance in resistors networks, passengers in airline networks, and the

existence of weak ties between individuals in social networks [26, 37–40].

These systems can be better described in terms of weighted networks,

i.e. networks in which each link carries a numerical value measuring the

strength of the connection. In this sense a new setW ≡ {w1, w2, . . . , wK}
must be considered. With this new position a graph G is defined as:

GW = {N ,L,W}.
When weighted networks are considered, it is useful to represent them

using another matrix over the adjacency one. In these cases it is useful

to consider a weight matrix W , a N × N square matrix whose entry

wij (i, j = 1, . . . , N) is equal to the link weight.

This thesis focuses on the structural properties of networks based

on urban street patterns. This means that our networks are all weighted

and undirected. Now it is time to define the quantities that will help us

in the characterization of these properties.

1.1.1 Node degree, strength and their distributions

The degree (or connectivity) ki of a node i is the number of edges

incident with it. It is defined in terms of the adjacency matrix A as:

ki =
∑

j ∈N

aij . (1.1)

In the case of weighted graphs it can also be defined a node strenght si

which is the sum of the edges weights incident with the node i. In terms

11



1.1 Fundamental Concepts

of weight matrix W we could express it as:

si =
∑

j ∈N

wij . (1.2)

The most basic topological characterization of a graph G can be ob-

tained in terms of the degree distribution P (k), defined as the prob-

ability that a node uniformly chosen at random has degree k or, equiva-

lently, as the fraction of nodes in the graph having degree k (analogously

one can define a strenght distribution P (s)). Information on how the

degree is distributed among the nodes of an undirected network can be

obtained either by a plot of P (k), or by the calculation of the moments

of the distribution. The n-moment of P (k) is defined as:

〈kn〉 =
∑

k

kn P (k) . (1.3)

The firs moment 〈k〉 is the average degree of G. The second mo-

ment measures the fluctuations of the connectivity distribution and the

divergence of 〈k2〉 is responsable for the change of behaviour in dynam-

ical processes acting on a net (in the limit of infinite systems) [41–43].

The degree distribution completely determines the statistical properties

of uncorrelated networks as shown by Newman et al. in [44] using the

approach based on generating functions.

In finite-size networks, fat tailed degree distributions have natural

cut-offs [45]. When analyzing real networks, it may happen that the

data have rather strong intrinsic noise due tu the finiteness of the sam-

pling. Therefore, when the size of the system is small and the degree

distribution P (k) is heavy-tailed, it is sometimes advisable to measure

the cumulative degree distribution P>(k), defined as:

P>(k) =
∞
∑

k′=k

P (k′) . (1.4)

Indeed, when summing up the original distribution P (k), the statistical

fluctuations generally present in the tails are smoothed.

12



1.1 Fundamental Concepts

A large number of real networks are correlated in the sense that the

probability that a node of degree k is connected to another node of degree,

say k′, depends on k. In these cases, it is necessary to introduce the

conditional probability P (k′|k), defined as the probability that a link

from a node of degree k points to a node of degree k′. P (k′|k) satisfies
the degree detailed balance condition kP (k′|k)P (k) = k′P (k′|k)P (k′) [46,

47]. For uncorrelated graphs, the balance condition gives P (k′|k)P (k) =

k′P (k′)/〈k〉.
Correlated graphs are classified as assortative if the average degree

of nearest neighbour knn is an increasing function of k, whereas they are

referred to as disassortative when knn is a decreasing function of k [48].

In other words, in assortative networks the nodes tend to connect to their

connectivity peers, while in disassortative networks nodes with a lower

degree are more likely connected with highly connected ones.

In general, assortative mixing, that is typical of many social systems,

is not detected in urban networks. Such a result is probably related to

a principle of hierarchy which drives rich streets to “order” the urban

pattern at the local level: to have many rich streets intersecting each

other would lead to a waste of land and financial resources, for one single

“main street” can easily and rather successfully connect the most of an

urban district [49].

1.1.2 Clustering

Clustering, also known as transitivity, is a typical property of acquain-

tance networks, where two individuals with a common friend are likely

to know each other [10]. This can be quantified by defining the transi-

tivity T of the graph as the relative number of triples, i.e. the fraction of

connected nodes which also form triangles. An alternative possibility is

to use the graph’s clustering coefficient C, a measure introduced by

Watts and Strogatz [1] defined as follows. A quantity ci (local clustering

13



1.1 Fundamental Concepts

of node i) is introduced, expressing how likely ajm = 1 for two neighbors

j and m of node i. Its value is obtained counting the number of edges

(denoted by ei) in the subgraph Gi of node i neighbours (a local prop-

erty). The local clustering coefficient is defined as the ratio between ei

and ki(ki − 1)/2, the maximum possible number of edges in Gi, so:

ci =
2ei

ki(ki − 1)
=

∑

j,m aijajmami

ki(ki − 1)
. (1.5)

The clustering coefficient of the graph C is the average of ci over all nodes

in G:

C ≡ 〈c〉 = 1

N

∑

j ∈N

ci. (1.6)

By definition, 0 6 ci 6 1, and 0 6 C 6 1. It is also useful to consider

c(k), the clustering coefficient of a connectivity class k, which is defined

as the average of ci over all nodes with degree k.

1.1.3 Shortest path lengths and diameter

Graphs are often used to modelize systems in which something moves

through them. Consider, for example, transportation or communication

systems but also social systems have “things” moving through them (gos-

sip news or infections to cite some). So it is very important to know which

route is the best to ensure a fast and safe delivery as good as the exten-

tion and the robustness of the system in which we are moving through.

In this section we focus on quantities that deal with such issues.

The shortest path plays an important role in transport and communi-

cation within a network. Suppose one needs to send a data packet from

one computer to another through the Internet: the geodesic or shortest

path is the shortest path connecting two nodes (in an unweighted net-

work the minimum number of hops to reach node j from i). Geodesics

provide optimal path way, since one would achieve a fast transfer and

save of system resources. For such a reason, shortest paths have also

14



1.1 Fundamental Concepts

played an important role in the characterization of the internal structure

of a graph [10]. It is useful to represent all the shortest path lengths of a

graph G as a matrix D in which the entry dij is the length of the geodesic

from node i to node j. The maximum value of dij is called the diameter

of the graph. A measure of the typical separation between two nodes in

the graph is given by the average shortest path length L (a global

property), also known as the characteristic path length, defined as

the mean of geodesic lengths over all couples of nodes [10, 50].

L =
1

N(N − 1)

∑

i,j ∈N , i 6=j

dij. (1.7)

A problem arising from the above definition is that L diverges if there

are disconnected components in the graph. One possibility to avoid such

a divergence is to limit the summation in Eq. (1.7) only to pairs of nodes

belonging to the largest connected component, or giant component

[51]. The other alternative, based on the so-called efficiency will be

described in Sec. 3.3.1.
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1.2 Planar Graphs

1.2 Planar Graphs

A graph is said to be embeddable in the plane, or planar, if it can be

drawn in the plane so that its edges intersect only at their ends [35, 36].

Such a drawing is called a planar embedding of the graph. A planar

embedding G̃ of a planar graph G can be regarded as a graph isomorphic

to G; the vertex set of G̃ the edge set of G̃ is the set of points representing

the vertices of G, the edge set of G̃ is the set of lines representing the

edges of G.For this reason,we often refer to planar embedding G̃ of planar

graph G as a plane graph, and we refer to its points as vertices and

its lines as edges. However, when discussing both a planar graph G

and a planar embedding G̃, in order to distinguish the two graphs, we

call the vertices and edges of G̃ points and lines. An example of planar

embedding of a graph is shown in Fig. 1.3.

Figure 1.3: A graph (a) and its planar embedding (b).

1.2.1 The Jordan curve theorem

It is evident from the above definition that the study of planar graphs

necessarily involves the topology of the plane. For further reading one

could look at [52].

The results of topology that are especially relevant in the study of

planar graphs are those which deals with simple curves. By curve, we

mean a continuous image of a closed unit line segment. Analogously, a

closed curve is a continuous image of a circle. A curve, or a closed curve,

is simple if it does not intersect itself (in other word, if the mapping

16



1.2 Planar Graphs

is one-to-one). Properties of such curves come into play in the study of

planar graphs because cycles in the plane graphs are simple closed curves.

A subset of the plane is arcwise-connected if any two of its points

can be connected by a curve lying entirely within the subset. The basic

result of topology that we need is the Jordan curve theorem.

Theorem 1.2.1 (The Jordan curve theorem). Any simple closed

curve C in the plane partitions the rest of the plane in two disjoint

arcwise-connected open sets.

Although this theorem is intuitively obvious, giving a formal proof of

it is quite trocky. The two open sets into which a simple closed curve

C partitions the plane are called the interior and the exterior of C.

We denote them by int(C) and ext(C), and their closures by Int(C) and

Ext(C), respectively (thus Int(C) ∩ Ext(C) = C). The Jordan curve

theorem implies that every arc joining a point of int(C) to a point of

ext(C) meets C in at least one point as shown in Fig. 1.4 The Jordan

Figure 1.4: The Jordan curve theorem.

curve theorem is an useful tool that allows to declare if a graph is planar

or not.

Theorem 1.2.2. Given a complete graph with five nodes, such graph is

nonplanar.

17



1.2 Planar Graphs

Proof. By contradiction. Let G be a planar embedding of the complete

graph K5, with vertices v1, v2, v3, v4, v5. Because G is complete, any two

of its vertices are joined by an edge. Now the cycle C ≡ v1v2v3v1 is

a simple closed curve in the plane, and the vertex v4 must either lie

in int(C) or ext(C). Without loss of generality, we may suppose that

v4 ∈ int(C). Then the edges v1v4, v4v4, v2v4 all lie entirely in int(C), too

(apart from their ends v1, v2, v3) as one can see in Fig. 1.5.

Consider the cycles C1 ≡ v2v3v4v2, C2 ≡ v3v1v4v3, and C3 ≡ v1v2v4v1.

Observe that vi ∈ ext(Ci), i = 1, 2, 3. Because viv5 is an edge of G, and

G is a plane graph, it follows from Jordan curve theorem that v5 ∈
ext(Ci), i = 1, 2, 3 too. Thus v5 ∈ ext(C). But now the edge v4v5 crosses

C, again by the Jordan curve theorem. This contraddicts the planarity

of the embedding G.

Figure 1.5: Proof of the non planarity of a complete graph with five nodes.

1.2.2 Subdivisions

Any graph derived from a graph G by a sequence of edge subdivisions

is called a subdivision of G (or a G-subdivision).

Proposition 1.2.1. A graph G is planar if and only if every subdivision

of G is planar.

18



1.3 Duality

Planar graph and graphs embeddable on the sphere are two faces of

the same coin. To see this, we make use of a kind of mapping known

as stereographic projection. A stereographic projection is made in this

way: consider a sphere S resting on a plane P and denote by z the point

that is diametrically opposite to the point of contact between S and P .

The mapping between S and P made through z is called a stereographic

projection from z and is illustrated in Fig. ??.

Figure 1.6: Stereographic projection.

Theorem 1.2.3. A graph G is embeddable on the plane if and only if it

is embeddable on the sphere.

Proof. Suppose that G has an embedding G̃ on the sphere. Choose a

point z of the sphere not in G̃. Then the image of G̃ under stereographic

projection from z is an embedding of G on the plane. The converse is

proved similarly.

On many occasions, can be useful to consider embedding of graphs

on the sphere; one example is proposed in [53].

1.3 Duality

1.3.1 Faces

A plane graph G partitions the rest of the plane into a number of

arcwise-connected open sets. These sets are called the faces of G. An
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example is shown in Fig. 1.7 in which the graph has five faces, namely,

f1, f2.f3, f4 and f5. Each plane graph has exactly one unbounded face

called the outer face. In our example the outer face is f1. We denote

by F(G) and f(G) the set of faces and the number of faces, respectively.

The notion of faces applies also to embeddings of graphs on other surfaces.

Figure 1.7: A plane graph with five faces.

The boundary of a face f is the boundary of the open set f in the

usual topological sense. A face is said to be incident with the vertices

and edges in its boundary, and two faces are adjacent if their boundaries

have an edge in common. In Fig. 1.7, the face f1 is incident with the

vertices v1, v2, v3, v4, v5 and the edges e1, e2, e3, e4, e5; it is adjacent to the

faces f3, f4, f5.

We denote the boundary of a face with ∂(f), the reason will be clear

when we will discuss about duality. The boundary of a face may be

regarded as a subgraph.

Proposition 1.3.1. Let G be a planar graph, and let f be a face in some

planar embedding of G. Then G admits a planar embedding whose outer

face has the same boundary as f .

By the Jordan curve theorem, a planar embedding of a cycle has

exactly two faces. In the ensuing discussion of plane graphs, we assume,

a number of other intuitively obvious statements concerning theri faces.
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We assume, for example, that a planar embedding of a tree has just

one face, and that, each face boundary in a connected plane graph is

itself connected. Some of these facts rely on another basic result of plane

topology, known as the Jordan-Schönfliess theorem.

Theorem 1.3.1 (The Jordan-Schönfliess theorem). Any home-

omorphism of a simple closed curve in the plane onto another simple

closed curve can be extended to a homeomorphism of the plane.

One implication of this theorem is that any point p on a simple closed

curve C can be connected to any point not on C by means of a simple

curve which meets C only in p [52]. A cut edge in a plane graph has just

one incident face, but we may think of the edge as being incident twice

with the same face (once for each side); all other edges are incident with

two distinct faces. We say that an edge separate the faces incident with

it. The degree, d(f) of a face f is the number of edges in its boundary

∂(f), cut edges counted twice. In Fig. 1.7, the edge e9 separates the faces

f2 and f3 and the edge e8 separate the face f5 from itself; so d(f3) and

d(f5) are 6 and 5 respectively.

Suppose that G is a connected plane graph. To subdivide a face f

of G is to add a new edge e joining two vertices on its boundary in such

a way that apart from its endpoints, e lies entirely in the interior of f .

This operation results in a plane graph G+ ≡ G + e with exactly one

more face than G; all the faces of G except f are also faces of G+ and

the face f is replaced by two new faces f1 and f2, which meet in the edge

e as shown in Fig. 1.8

Theorem 1.3.2. In a nonseparable plane graph with number of nodes

greater or equal to three, each face is bounded by a cycle.
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Figure 1.8: Subdivision of a face by adding an edge e. The right graph is
called G+.

1.3.2 Duals

Given a plane graph G, one can define a second graph G∗ as follows.

Corresponding to each face f of G there is a vertex f ∗ of G∗, and corre-

sponding to each edge e of G there is an edge e∗ of G∗. Two vertices f ∗

and g∗ are joined by the edge e∗ in G∗ if and only if their corresponding

faces f and g are separated by the edge e in G. Observe that if e is a cut

edge of G, then f = g, so e∗ is a loop for G∗; conversely, if e is a loop of

G, the edge e∗ is a cut edge of G∗. The graph G∗ is called the dual of

G. The dual of plane graph in Fig. 1.3 is drawn in Fig. 1.9.

Figure 1.9: The dual of the plane graph shown in Fig. 1.7.

In the dual G∗ of a plane graph G, the edges corresponding to those

which lie in the boundary of a face f of G are just the edges incident

with the corresponding vertex f ∗- When G has no cut edges, G∗ has

no loops, and this set is precisely the trivial edge cut ∂(f ∗); that is

∂(f ∗) = {e∗ : e ∈ ∂(f)}.
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It is easy to see that the dual G∗ of a plane graph G is itself a planar

graph; in fact, there is a natural embedding of G∗ in the plane. We

place each vertex f ∗ in the corresponding face f of G, and then draw

each edge e∗ in such a way that it crosses the corresponding edge e of G

exactly once (and crosses no other edge of G) as shown in Fig. 1.10. It

Figure 1.10: A plane graph and its plane dual. The dual is drawn using bold
lines and each vertex is placed into its corresponding face.

is intuitively clear that we can always draw the dual as a plane graph in

this way, but we do not prove this. We refer to such a drawing of the

dual as a plane dual of the plane graph G.

Proposition 1.3.2. The dual of any plane graph is connected.

Proof. Let G be a plane graph and G∗ a plane dual of G. Consider any

two vertices of G∗. There is a curve in the plane connecting them which

avoids all vertices of G. The sequence of faces and edges of G traversed

by this curve corresponds in G∗ to a walk connecting the two vertices.

Although defined abstractly, it is often convenient to regard the dual

G∗ of a plane graph G as being itself a plane graph, embedded as de-

scribed above. One may then consider G∗∗ the dual of G∗. When G

is connected, it is not difficult to prove that G∗∗ ∼= G and a glance at

Fig. 1.10 prove it.
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1.3 Duality

The following relations are direct consequences of the definition of the

dual G∗.

N (G∗) = F(G), L(G∗) = L(G), and dG∗(f ∗) = dG(f) ∀f ∈ F(G) .

(1.8)

Now, we can re-write a theorem in its dual version:

Theorem 1.3.3. if G is a plane graph,

∑

f∈F

d(f) = 2K ,

where K is the total number of edges in the graph.

Proof. Let G∗ be the dual of G. By Eq. (1.8) and remembering that
∑

v∈N ki = 2K we have:

∑

f∈F(G)

d(f) =
∑

f∗∈N (G∗)

d(f ∗) = 2L(G∗) = 2L(G) = 2K .

A simple connected plane graph in which all faces have degree three

is called a plane triangulation or, simply triangulation. As a conse-

quence of Eq. (1.8) we have:

Proposition 1.3.3. A simple connected plane graph is a triangulation

if and only if its dual is cubic.

It is easy to show that every simple plane graph on three or more

vertices is a spanning subgraph of a triangulation. On the other hand, no

simple spanning supergraph of a triangulation is planar. For this reason,

triangulations are also known as maximal planar graphs. They play

an important role in the theory of planar graphs.

24



1.4 Euler’s formula

1.4 Euler’s formula

There is a simple formula relating the number of vertices, edges and

faces in a connected plane graph. It was first established for polyhedral

graphs by Euler in 1752 and is known as Euler’s formula.

Theorem 1.4.1 (Euler’s formula). For a connected plane graph G

the following relation holds:

N(G)−K(G) + f(G) = 2 . (1.9)

Proof. By induction of f(G), the number of faces of G. if f(G) = 1, each

edge of G is a cut edge and so G, being connected, is a tree. In this case

K(G) = N(G) − 1 and the assertion holds. Suppose that is true for all

connected plane graph with fewer than f faces, where f ≥ 2, and let G

be a connected plane graph with f faces. Choose an edge e of G that

is not a cut edge. Then G− ≡ G − e is a connected plane graph with

f − 1 faces, because the two faces of G separated by e coalesce to form

one face of G−. By the induction hypotesis,

N(G−)−K(G−) + f(G−) = 2 .

Using the relations:

N(G−) = N(G), K(G−) = K(G)− 1, and f(G−) = f(G)− 1 ,

we obtain

N(G)−K(G) + f(G) = 2 .

The theorem follows by induction.

Corollary 1.4.1. All planar embeddings of a connected planar graph

have the same number of faces.

Proof. Let G̃ be a planar embedding of a planar graph G. By Euler’s

formula Eq. (1.9), we have:

f(G̃) = K(G̃)−N(G̃) + 2 = K(G)−N(G) + 2 .
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1.4 Euler’s formula

Thus the number of faces of G̃ depends only on the graph G, and not on

its embedding.

Corollary 1.4.2. Let G be a simple planar graph on at least three ver-

tices. Then K ≤ 3N − 6. Furthermore, K = 3N − 6 if and only if every

planar embedding of G is a triangulation.

Proof. It clearly suffices to prove the corollary for connected graphs. Let

G be a simple connected planar graph with n ≥ 3. Consider any planar

embedding G̃ of G. Because G is simple and connected, on at least

three vertices, d(f) ≥ 3 for all f ∈ F(G̃). Therefore, remembering that
∑

f∈F d(f) = 2K and Euler’s formula (1.9):

2K =
∑

f∈F(G̃)

d(f) ≥ 3f(G̃) = 3(K −N + 2) , (1.10)

or, equivalently,

K ≤ 3N − 6 . (1.11)

Equality holds in Eq. 1.11 if and only if it holds in Eq. 1.10, that is, if

and only if d(f) = 3 for each f ∈ F(G̃).

Corollary 1.4.3. Every simple planar graph has a vertex of degree at

most equal to five.

Proof. This is trivial for N < 3. If N ≥ 3. Then remembering that
∑

i ki = 2K and the previous corollary we found:

δN ≤
∑

v∈N

d(v) = 2K ≤ 6N − 12 .

It follows that δ ≤ 5.

The definitions and theorems presented in this chapter tell much

about the importance of planar graphs. As we will see soon, a city

can be mapped into a planar graph. However, cities are not the only

examples of networks that can be embedded in a plane. Fig. 1.11 show

some examples of planar graph that we can encounter in everyday life

and in many differnt sectors of science.
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Figure 1.11: Some examples of plane graphs that can be found in everyday
life. From top left in clockwise sense: Amazon river basin, a
leaf venation system, a graphene sheet, human arterial venation
system and the US highway system.

1.5 Fractal Box-Counting Dimension dbox

What is the “dimension” of a set of points? For familiar geometric

objects, the answer is clear: lines and smooth curves are one-dimensional,

planes and smooth surfaces are two-dimensional, solids are three-dimensional,

and so on. If forced to give a definition, we could say that the dimension

is the minimum number of coordinates needed to describe every point in

the set. When we try to apply this definition to fractals, we quickly run

into paradoxes. Consider, for example, the von Koch curve (Fig. 1.12):

What is the dimension of von Koch curve? Since it is a curve you might

be tempted to say that is one. But the trouble is that it has infinite

length! To prove this, observe that if the lenght of E0 is L0, then the

length of E1 is L1 = 4
3
L0. The length increases by a factor 4

3
at each

stage, so Ln = (4
3
)nL0 and Ln →∞ as n→∞.

Moreover, the arc length between any two points on the curve is in-

27



1.5 Fractal Box-Counting Dimension dbox

Figure 1.12: Iterative procedure to generate a von Koch curve. At each step,
each segment is divided in three parts. Then the central part is
removed and replaced with two segments of equal length. This
procedure can be repeated as many times as one want. Here
we report the first four step and the resulting curve when the
number of iterations become big.

finite. Hence points on the curve are not determined by their arc length

from a particular point, because every point is infinitely far from every

other. This suggest that the curve is more than one-dimensional. How-

ever, would we really want to say that it is two-dimensional? It certainly

does not seem to have any “area”. So the dimension should be between

1 and 2, whatever that means.

Same discussion applies for the set of points which represents the

nodes of a spatial graph. Since they are displaced over a surface, we can

think to give dimension 2 to this set. Nevertheless, they do not have an

“area” like the points of the von Koch curve and does not lay on a curve,

suggesting that their dimension must be higher than 1.

Any object having a dimension which is not integer is called a frac-

tal [54]. Now the question became: how can we calculate the fractal

dimension of a set of points? To deal with fractals that are not self-

similar (i.e. they are made of scaled-down copies of themselves, all the
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1.5 Fractal Box-Counting Dimension dbox

way down to arbitrary small scales), various definitions have been pro-

posed [55]. All the definitions share the idea of “measurement at a scale

ε”: we measure the set in a way that ignores irregularities of size less

than ε, and then study how measurement vary as ε → 0. Consider a
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Figure 1.13: An example of square covering for a smooth curve (a) and for
a planar region (b).

set of points in a D-dimensional Euclidean space. Let N(ε) be the min-

imum number of D-dimensional cubes of side ε needed to cover the set.

How does N(ε) depends on ε? Consider, for example, the cases shown in

Fig. 1.13. For a smooth curve of length L (Fig. 1.13 (a)), N(ε) ∝ L/ε; for

a planar region of surface A bounded by a smooth curve (Fig. 1.13 (b)),

N(ε) ∝ A/ε2. The key observation is that the dimension of the sets

equals the exponent d in the power law N(ε) ∝ 1/εd. This relation holds

also for fractals, in which the dimension d is no longer integer. The box

counting dimension is defined as:

d = lim
ε→0

lnN(ε)

ln(1/ε)
, if the limit exist. (1.12)

So if one plot the logarithm of N(ε) versus the logarithm of 1/ε he would

find a straight line of slope d which gives the estimate of the box dimen-

sion. As shown in Fig. 1.14 there are also points with a constant value of

lnN(ε). These points represent the cases in which the box is too small or

either too big and always contains the same number of points. However,

the box dimension is rarely used in practice. Its computation requires

too much storage space and computer time, compared to other types of
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1.5 Fractal Box-Counting Dimension dbox

fractal dimension. Grassberger and Procaccia [56] in 1983 proposed a

more efficient approach tha has become standard. Consider a point x in

the Euclidean space. Let Nx(ε) denote the number of points of the sys-

tem inside a ball of radius ε centered on x. Now vary ε. As ε increases,

the number of points in the ball tipically grows and if one averages over

many x we found that this quantity scales as a power law:

〈Nx(ε)〉 ∝ εd ,

where the average is meant over the points x. d is called correlation

dimension. In general, dcorrelation ≤ dbox, although they are usually very

close [56].
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Figure 1.14: Logarithm of number of squares needed to cover the set N(ε)
as a function of the logarithm of the inverse of the square size
ε. The data (red squares) refers to the whole city of Leicester
(UK) while the dashed line is the linear fit which gives the
box dimension (dbox = 1.57). (data courtesy of the City Form

project).
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CHAPTER 2

GRAPHS OF URBAN STREET PATTERNS

After the brief theoretical introduction of the previous chapter on

planar graphs, we are now ready to discuss the issue of extracting and

converting an urban street pattern into a plane graph. To do so, we need

to introduce the basic notions on the GIS, the geographical information

system. Moreover, as we have seen before we have to deal with the

possibility of choosing a plane graph or its dual, and with the definition of

a good methodology to compare the characteristics of graphs of different

cities. The comparison requires the use of two particular plane graphs

and the algorithms used to extrapolate those graphs from the original

one are here explained. The result of the analysis will be presented in

the next chapter.

2.1 Geographical Information Systems

A geographic information system, or geographical informa-

tion system (GIS), is any system that integrates hardware, software,

and data to captures, stores, analyzes, manages, and presents data that

are linked to location [57, 58]. In the simplest terms, GIS is the merg-

ing of cartography, statistical analysis, and database technology. GIS
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2.1 Geographical Information Systems

systems are used in cartography, remote sensing, land surveying, utility

management, natural resource management, photogrammetry, geogra-

phy, urban planning, emergency management, navigation, and localized

search engines. GIS allows us to view, understand, question, interpret,

and visualize data in many ways that reveal relationships, patterns, and

trends in the form of maps, globes, reports, and charts. In a more generic

sense, GIS applications are tools that allow users to create interactive

queries (user-created searches), analyze spatial information, edit data,

maps, and present the results of all these operations.

The use of GIS establish its foundation in 1854 when John Snow de-

picted a cholera outbreak in London using points to represent the loca-

tions of some individual cases, possibly the earliest use of the geographic

method [59]. His study of the distribution of cholera led to the source of

the disease, a contaminated water pump (the Broad Street Pump, whose

handle he had disconnected, thus terminating the outbreak) within the

heart of the cholera outbreak.

Figure 2.1: A reconstruction of John Snow map’s. The points represent the
cholera cases.

While the basic elements of topography existed previously in cartog-

raphy, the John Snow map was unique, using cartographic methods not
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2.2 The Primal Approach and The Dual Approach

only to depict but also to analyze clusters of geographically dependent

phenomena for the first time.

The year 1962 saw the development of the world’s first true oper-

ational GIS in Ottawa, Ontario, Canada by the federal Department of

Forestry and Rural Development. Developed by Dr. Roger Tomlinson,

it was called the “Canada Geographic Information System” (CGIS) and

was used to store, analyze, and manipulate data collected for the Canada

Land Inventory (CLI) – an effort to determine the land capability for ru-

ral Canada by mapping information about soils, agriculture, recreation,

wildlife, waterfowl, forestry, and land use at a scale of 1:50,000. A rating

classification factor was also added to permit analysis.

GIS is a powerful tool for urban planners since it allows to conjugate

the network approach with the availability of informations which are

spatially distributed like retail or population densities [32]. As we will

see below, Using GIS systems is possible to convert city maps into graphs.

2.2 The Primal Approach and The Dual

Approach

How can we convert the usual representation of a city as a map printed

on a sheet of paper into a plane graph dataset to be used in computer

simulation? The theory itself suggests that different approaches could be

used [35, 36], but here we focus on only two of them which are the most

used in urban planning [23, 49, 60, 61]. From now on, we will refer to

them as the primal and the dual approach.

• In the primal approach one focus on intersections mapping road

crossings as nodes and streets as edges. The advantage of this

approach are that it is very intuitive and that the outcome of this

mapping is unique [25, 62, 63].
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• Conversely, the dual approach mapps streets as nodes and intersec-

tions between streets as links. This approach has the advantage to

focus on streets (useful in route finding with GPS navigator [64]).

Unfortunately, focusing on the concept of street the outcome of this

kind of mapping is not unique (dependent on street naming, line of

sight, etc.) [61, 65, 66].

(a)

(b) (c)

Figure 2.2: Different approaches to map a city into a graph. The original
city map of Walnut Creek (USA) (a), the primal graph (b) and
the dual one (c).
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An example of the outcome of the two approaches is showed in Fig. 2.2.

In this work we decided to adopt the primal approach to map the cities

we are going to study. In particular, we have imported twenty maps into

a GIS environment and constructed the correspondent spatial graphs of

street networks by using a road-centerline-between-nodes format [62].

Namely, each urban street pattern is trasformed into an undirected,

weighted graph G = (N ,L), embedded in the 2-dimensional unit square.

N is the set of N nodes representing street intersections and character-

ized by their positions {xi, yi}i=1,...,N in the square. L is the set of K links

representing streets. The links follow the footprints of real streets and are

associated a set of real positive numbers representing the street lengths,

{lk}k=1,...,K . The graph is then described by the adjacency N×N matrix

A, and by a N ×N matrix W , whose entry wij is equal to the length of

the street connecting node i and node j. In this way both the topology

and the geography (metric distances) of the system will be taken into

account.

2.3 Greedy Triangulation and Minimum

Spanning Tree

We have previously commented on the fact that in order to com-

pare different graphs or in order to say if a certain feature is statically

significative one has to “normalize” the results with respect to a random-

ized version of the graph under study [2, 9, 33, 35, 50]. We have also

found that, planar graphs are those graphs forming vertices whenever

two edges cross, whereas non-planar graphs can have edge crossings that

do not form vertices [35]. So the tecnique of studying graphs with the

same number of nodes and edges but with edges randomly rewired is no

longer good since does not guarantee planarity as one can see in Fig. 2.3.
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Figure 2.3: A typical example of randomization. The graph edges are
rewired randomly while preserving the number of nodes N and
edges K.

The graphs representing urban street patterns are, by construction,

planar, and we will then compare their structural properties with those

of minimally connected and maximally connected planar graphs. In par-

ticular, following Buhl et al. [24], we consider the Minimum Spanning

Tree (MST) and the Greedy Triangulation (GT) induced by the dis-

tribution of nodes (representing street intersections) in the square.

Spanning trees are the planar graphs with the minimum number of

links in order to assure connectedness, while greedy triangulations are

graphs with the maximum number of links compatible with the planarity.

So, these graphs represent the lower and upper bound to the number of

edges that a plane graph can have. However, we do not have only to deal

with the problem of planarity but also with limited resources. In fact,

there is a cost associated to the creation of a road. This may depend on

many factors (type of street, its width, materials used, to cite a few) but

the simplest dependece is on mere street length. We define the cost as

the sum of the street lengths. In formula:

W =
∑

i,j

aij wij , (2.1)

where:

wij = dEuclij =
√

(xi − xj)2 + (yi − yj)2 (2.2)

is here taken to be equal to the Euclidean distance dEuclij . Now it is time

to give a proper definition of these two special graphs.
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The Minimum Spanning Tree (MST) is the shortest tree which

connects every nodes into a single connected component. By definition

the MST is an acyclic graph that contains Kmin = N − 1 links. This is

the minimum number of links in order to have all the nodes belonging to

a single connected component [35, 36]. At the other extreme, as proved

in the previous chapter, the maximum number of links, Kmax, that can

be accomodated in a planar graph with N nodes (without breaking the

planarity) is equal to Kmax = 3N − 6 [36]. The natural reference graph

should be then the Minimum Weight Triangulation (MWT), which

is the planar graph with the highest number of edges Kmax, and that

minimize the total length.

Since no polynomial time algorithm is known to compute the MWT,

we thus consider the Greedy Triangulation (GT), that is based on

connecting couples of nodes in ascending order of their distance provided

that no edge crossing is introduced [67]. The GT is easily computable

and leads to a maximal connected planar graph, while minimizing as far

as possible the total length of edges considered. In Fig. 2.4 we report an

example of the graphs that we have extracted from the city maps that

we have studied in [31].

2.4 Algorithms for calculating MST and

GT

We have seen that a weighted undirected graph could be represented

using two matrices: the adjacency A and the weight W ones. However,

such matrices are sparse i.e. contains a lot of null elements. So, mapping

a graph on a computer using its adjacency matrix could become very

expensive in terms of memory consumption (especially when the number

of nodes N becomes big). A way to overcome this problem is to store the

matrix using one of the sparse matrix structure [68]. The most common
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Figure 2.4: The urban pattern of Savannah (USA) as it appears in the orig-
inal map (top left), and the correspondent spatial graph (top
right). The resulting MST (bottom left) and GT (bottom right).

are: compressed sparse column (CSC), compressed sparse row (CSR)

and coordinate list (COO). Let us describe the coordinate list, which

is the one we choose to adopt in our simulations. A sparse matrix in

coordinate format, also known as triplet, is a structure whose element

stores a list of (row, column, value) tuples. Ideally, the entries are

sorted (by row index, then column index) to improve random access

times. Let us explain the role of each field of the tuples, considering an

element aij = c of a sparse matrix A its COO representation will be:
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row the row index of the element. In our case: i;

column the column index of the element. In our case: j;

value the value of the element. In our case: c.

In the case of graphs, for each link row and column represent the id of

the nodes incident with that link and value it is the weight of the link

itself (in the case of unweighted graphs this information can be omitted

allowing further memory saving). The advantages of COO representation

lay in its easy convertibility to and from other sparse matrix formats,

while its disadvantages are relatet with the fact that it does not allow

direct mathematic operations on it [69].

In our dataset we added even more entries in the COO tuples in order

to store more informations. A tipical entry looks like this:

Nfrom Xfrom Yfrom Xmean Ymean Nto Xto Yto r m
28 42.0 38.0 42.5 38.0 44 42.0 38.0 3.50 4.18

where:

Nfrom: ID of the source node;

Xfrom: x coordinate of the source node;

Yfrom: y coordinate of the source node;

Xmean: x coordinate of the mean point M of segment AB;
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Ymean: y coordinate of the mean point M of segment AB;

Nto: ID of the destination node;

Xto: x coordinate of the destination node;

Yto: y coordinate of the destination node;

r: radius
dAB

2
;

m: angular coefficient of segment AB.

These informations are used by both the algorithms that compute the

GT and the MST that we are going to explain. To construct both the

MST and the GT induced by the spatial distribution of points (nodes)

{xi, yi}i=1,...,N in the unit square, we sorted out all the couples of nodes,

representing all the possible edges of a complete graph, by ascending

order of their length.

2.4.1 The greedy triangulation algorithm

The algorithm we adopted for computing the GT is a brute force one

based on some peculiar characteristics of planar GT [67], i.e. it performs

a series of checks to say if an edge could be placed in the GT or not.

The algorithm browses the ordered list of edges in ascending order of

length and, for each edge, it checks whether adding the edge produces

any intersections with any other edge that have been already added.

The checks are divided into two levels. First level checks are easy to

implement and act as an high level filter over the list of edges to select

only the “worthful” cases avoiding an explosion of the computational

complexity. The second level checks, instead, are much more complex

and allow to individuate without mistakes the edges belonging to the

GT.
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2.4 Algorithms for calculating MST and GT

Taking two edges, AB (belonging to GT) and CD (to check if it

belongs to GT) and say m1,m2 the angular coefficients; 1, 2 the middle

points and r1, r2 the radius of the segments, we have:

Step 1 If d12 is the distance between point 1 and 2

d12

{

> (r1 + r2) CD does not cross AB and can be added;

≤ (r1 + r2) we must go to Step 2.

Step 2 Supposing that the vertex of an edge are labeled such that xA <

xB and xC < xD, consider the linear system associated with the

equations of the straight lines which the two segments AB and CD

belong to.
{

Y − y1 = m1(X − x1) X ∈ [XA, XB]

Y − y2 = m2(X − x2) X ∈ [XC , XD]

From this we can extract the coordinates of the hypotetic intersec-

tion point X and Y :

X =
y1 −m1x1 − (y2 −m2x2)

m2 −m1

.

Analogously one can calculate:

Y =
m2y1 −m1y2 +m1m2(x2 − x1)

m2 −m1

.

Step 3 If X ∈ ([XA, XB] ∧ [XC , XD]), then the two edges will surely

cross each other and the edge CD has to be rejected from the GT

list because, since we are on a planar graph, two edges cannot cross

themselves without forming a node.
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2.4 Algorithms for calculating MST and GT

The first level check system illustrated above is very powerful but sub-

stantialy wrong since if one of the two end points of an edge coincide

with one of the other two the edge will be purged from the list even

if it could belong to GT. To avoid that, during the implementation of

the algorithm further checks have been added to take into account those

cases.

Step 3.1 Accept all the edges that have X ∈ ([XA, XB] ∧ [XC , XD]) but

with one extreme in common. The possible configurations could be

divided into four classes which are showed below.

Step 3.1.1 Moreover, we have to purge all those edges that have an

extreme in common but that are “parallel”, i.e. edges which su-

perpose over existing ones as shown below (the red edge is the

superposing one).

42



2.4 Algorithms for calculating MST and GT

Unfortunately, the checks based on the analysis of parameter X (or even-

tually Y ) are not enough to eliminate all the edges that does not belong

to GT. In particular, it has been observed that when one or more edges

are parallel to an axis the algorithm shows some bugs, related to the

angular coefficient m, that can be eliminated adding another check. This

check is of the same kind of the one used on X but, this time, applicated

on Y . In this way we can avoid certain peculiar configurations that can

be encountered during simulations.

Step 4 Purge all the edges being in one of the following configurations:

Edges parallel to the y axis.

Edges parallel to the x axis.

Orthogonal edges.

In the computed GT, the graphs we have obtained have less than
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2.4 Algorithms for calculating MST and GT

3N−6 edges. This is due to the fact that we have considered all the edges

as being straight-lines connecting the two end-nodes. For such a reason

some of edges connecting the external nodes (the nodes on the border

of the unit square) cannot be placed without causing edge crossings.

However, the number of these edges is of the order of
√
N and this issue

has a minor effect on the results.

2.4.2 The Kruskal algorithm

To compute the MST we have used the Kruskal algorithm [70, 71].

The algorithm consists in browsing the ordered list of edges, starting from

the shortest edge and progressing toward the longer ones. Each edge of

the list is added if and only if the graph obtained after the edge insertion

is still a forest or it is a tree. A forest is a disconnected graph in which

any two elements are connected by at most one path, i.e., a disconnected

ensemble of trees. (In practice, one checks whether the two end-nodes

of the edge are belonging or not to the same component). With this

procedure, the graph obtained after all the links of the ordered list are

considered is the MST. In fact, when the last link is included in the graph,

the forest reduces to a single tree. Since in the Kruskal algorithm an edge

producing a crossing would also produce a cycle, following this procedure

prevents for creating edge crossings. Using an algorithmic design it looks

like this:

A← ∅
for each edge (u, v) ∈ L(G), taken in increasing order of weight w do

if u, v /∈ N (A) then

A← A ∪ {(u, v)}
end if

end for

return A
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2.4 Algorithms for calculating MST and GT

Where G is the original graph and A is the MST. An example of how the

Kruskal algorithm works is shown in Fig. 2.5.

Figure 2.5: An example of how the Kruskal algorithm works. Top picture
represents the original graph from which we have to extract the
MST. The six pictures represent in clockwise sense choosing and
adding the six edges that form the MST. The green edges are
those belonging to the MST while the red ones are discarded
because either they form loops or have an higher weight w.
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CHAPTER 3

STRUCTURAL PROPERTIES OF PLANAR

GRAPHS OF URBAN STREET PATTERNS

In this chapter we present the dataset used and the results obtained on

both its local and global properties. Namely, we try to to establish if there

are some peculiar features that allows to discriminate the different species

of urban patterns. After a first characterization based on a topological

analysis, we pass to investigate the structural properties and finally we

try to understand how the resources are used in our cities analyzing the

behaviour of the cost versus efficiency.

For each city we have constructed the respective MST and GT. These

two bounds make also sense as regards as the possible evolution of a

city: the most primitive forms are close to trees, while more complex

forms involve the presence of cycles. We can then compare the structural

properties of the original graphs representing the city with those of the

two limiting cases represented by MST and GT.

3.1 Dataset and its basic properties

The database we have studied consists of twenty 1-square mile sam-

ples of different world cities, selected from the book by Allan Jacobs
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3.1 Dataset and its basic properties

[72]. A list of the considered cities is reported in Tab. 3.1, together with

the basic properties of the derived graphs. The considered cases exhibit

striking differences in terms of cultural, social, economic, religious and

geographic context. In particular, they can be roughly divided into two

large classes:

1. Patterns grown throughout a largely self-organized, fine-grained

historical process, out of the control of any central agency;

2. Patterns realized over a short period of time as the result of a single

plan, and usually exhibiting a regular grid-like, structure.

Ahmedabad (India), Cairo (Egypt) and Venice (Italy) are the most

representative examples of self-organized patterns, while Los Angeles

(USA), Richmond (USA), and San Francisco (USA) are typical exam-

ples of mostly-planned patterns. We have selected two different parts

of the city of Irvine, CA (USA), (named Irvine 1 and Irvine 2) for two

highly diverse kinds of urban fabrics: the first is a sample of an industrial

area showing enormous blocks with few intersections while the second is

a typical residential early sixties “lollipop” low density suburb based on

a tree-like layout with a lot of dead-end streets.

The differences between cities are already evident from the basic prop-

erties of the derived graphs. In fact, the number of nodes N , the number

of links K, and the cost of the wiring W , measured in meters, assume

widely different values, notwithstanding the fact we have considered the

same amount of land (Tab. 3.1). Notice that Ahmedabad has 2870 street

intersections and 4387 streets in a surface of 1-square mile, while Irvine

1 has only 32 intersections and 37 streets. Ahmedabad and Cairo are

the cities with the largest cost, while the cost is very small (less than

40000 meters) in Barcelona, Brasilia, Irvine, Los Angeles, New Delhi,

New York, San Francisco, Washington and Walnut Creek. A large differ-

ence is also present in the average edge (street) length 〈l〉, that assumes
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3.1 Dataset and its basic properties

CITY N K W 〈l〉 Dbox

1 Ahmedabad 2870 4387 121037 27.59 1.92
2 Barcelona 210 323 36179 112.01 1.99
3 Bologna 541 773 51219 66.26 1.95
4 Brasilia 179 230 30910 134.39 1.83
5 Cairo 1496 2255 84395 37.47 1.82
6 Irvine 1 32 36 11234 312.07 –
7 Irvine 2 217 227 28473 128.26 1.81
8 Los Angeles 240 340 38716 113.87 1.90
9 London 488 730 52800 72.33 1.94
10 New Delhi 252 334 32281 96.56 1.85
11 New York 248 419 36172 86.33 1.72
12 Paris 335 494 44109 89.29 1.88
13 Richmond 697 1086 62608 57.65 1.78
14 Savannah 584 958 62050 64.77 1.85
15 Seoul 869 1307 68121 52.12 1.87
16 San Francisco 169 271 38187 140.91 1.90
17 Venice 1840 2407 75219 31.25 1.81
18 Vienna 467 692 49935 72.16 1.88
19 Washington 192 303 36342 119.94 1.93
20 Walnut Creek 169 197 25131 127.57 1.80

Table 3.1: Basic properties of the planar graphs obtained from the twenty
city samples considered. N is the number of nodes, K is the
number of edges, W and 〈l〉 are respectively the total length of
edges and the average edge length (both expressed in meters),
Dbox is the box-counting fractal dimension.

the smallest values in cities as Ahmedabad, Cairo and Venice, and the

largest value in San Francisco, Brasilia, Walnut Creek and Los Angeles.

So street density and average street length are two quantities to look at

if one wants to “distinguish” between self-organized and planned cities.

In Ref. [73, 74] Crucitti et al. have studied the edges length distribution

P (l) for the two different classes of cities, showing that self-organized

cities show single peak distributions, while mostly planned cities exhibit

a multimodal distribution, due to their grid pattern.

Except for the case of Irvine 1 where the number of points is too low

to calculate the box counting dimension, all the values of Dbox for the
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3.1 Dataset and its basic properties

twenty cities are in the range between 1.72 and 1.99 which suggest us to

conclude that the fractal dimension of the set of nodes N is close to 2

but not equal. Anyway, in our analysis we decided to use the box dimen-

sion, instead of the correlation one, since the number of points is quite

small hence the calculations did not last too long. If we look at FIg. 3.1
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Figure 3.1: Average degree 〈k〉 and probability of having nodes with degree
respectively equal to 1,2,3,4 and 5 for the twenty cities consid-
ered. The cites are labeled from 1 to 20 as reported in Tab. 3.1.

we could infer informations on the structure of the patterns. Focusing

on the average degree 〈k〉 (upper panel) we see that it assumes values

between 2 and 3. As one can expect, cities with less nodes exhibit larger

fluctuations. Instead, if we look at the degree distribution P (k) (black

bars panels) we can try to guess some informations about the structure

of road intersections. For example, the cities of Irvine (1 and 2) and

Walnut Creek (columns 6,7 and 20) have a lot of nodes with degree 1

due to their lollipop structure [66, 75]. Instead, Ahmedabad and Cairo

(columns 1 and 5) have about the 80% of the nodes with degree 3 (Seoul

(15), Venice (17) and Vienna (18) are just below this percentage) denot-

ing a self-organized structure typical of a long time unplanned evolution.

49



3.2 Local Properties

Finally, observing the P (k = 4) is “easy” to identify the grid-like cities

like Barcelona (2), Los Angeles (8), New York (11), San Francisco (16)

and Washington (19).

It is not the aim of this work to discuss the meaning of such differences

in terms of their possible impacts on crucial factors for urban life, such

as pedestrian movements, way finding, land uses, or other cognitive or

behavioral matters. However, it is worth noting that, for instance, 3-arms

and 4-arms street junctions are expected to perform very differently in

human orienteering within an urban complex system due to differences

in the angle widths involved in each turn [65, 76].

In order to help the interpretation, and give better readability and

emphasis to the results, we have used an a priori classification of our

twenty cities. The classes are:

Medieval (arabic and european) (©): Ahmedabad, Cairo, Bologna,

London, Venice and Vienna;

Grid-iron (♦): Barcelona, Los Angeles, New York, Richmond, Savan-

nah and San Francisco;

Modernist (�): Brasilia and Irvine 1;

Baroque (∗): New Delhi and Washington:

Mixed (+): Paris and Seoul;

Lollipop (△): Irvine 2 and Walnut Creek.

3.2 Local Properties

Let us now start to study the local properties of our cities. In

particular we focus on two quantities: the meshedness coefficient and

number of cycles of different species. The former tell us if our graphs

resemble most to a GT or a MST, the latter, instead, will tell us what
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is the abbundance of a certain kind of motif. These are local properties

since does not involte the whole structure of the network but only small

glimpses of it. Starting from now, we will use the method based on

normalization with respect to MST and GT to discuss the results found.

3.2.1 The Meshedness Coefficient

Many complex networks contain a large number of short cycles or spe-

cific motifs [3, 4, 6]. For instance, the so called local clustering, also known

as transitivity, is a typical property of acquaintance networks, where two

individuals with a common friend are likely to know each other [10].

The degree of clustering is usually quantified by the calculation of the

clustering coefficient C, introduced in [1]. Such a quantity is not suited

to characterize the local properties of a planar graph, since by a simple

counting of the number of triangles present in the graph it is not possible

to discriminate between different topologies. For instance, there are cases

as diverse as trees, square-meshes and honey-comb meshes, all having the

same clustering coefficient equal to zero. Buhl et al. have proposed a

more general measure of the structure of cycles (not restricted to cycles

of length 3) in planar graphs, the so called meshedness coefficient M

[24]. The meshedness coefficient is defined as:

M =
F

Fmax

, (3.1)

where F is the number of faces (excluding the external ones) associated

with a planar graph with N nodes and K edges, and expressed by the

Euler formula (1.9). Fmax is the maximum possible number of faces that

is obtained in the maximally connected planar graph i.e. in a graph with

N nodes and Kmax = 3N − 6 edges, thus Fmax = 2N − 5. To better

understand the meaning of this coefficient let us consider an example

shown in Fig. 3.2: If we consider the graph of Fig. 3.2(a) (a tree) we have

that F = K − N + 1 = 3 − 4 + 1 = 0 such that M = 0
2∗4−5

= 0
3
= 0.

51



3.2 Local Properties

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

(a) (b)

Figure 3.2: Extreme cases for the meshedness coefficient: A tree (a) (M =
0), and a complete plane graph (b) (M = 1) where each face is
filled with a different color.

Instead, if we look at the graph in Fig. 3.2(b) (a complete plane graph) we

found that F = K−N +1 = 6−4+1 = 3 such that M = 3
2∗4−5

= 3
3
= 1.

We are then able to say that:

M(G) =

{

0 if G is a tree,

1 if G is a complete plane graph.

In our case, since our GT does not contain 3N − 6 edges the value of

meshedness is not exactly equal to 1 but close to it. The values of M

for the twenty cities are reported in Tab. 3.2. Values span from 0.014 for

Irvine 2 to 0.348 for New York demonstrating that our cities (even the

most dense) are far away from a complete planar graph. An additional

thing to look at is how the meshedness coefficient varies with respect

to both number of nodes N and of edges K. In Fig. 3.3 we report the

behaviour of M versus N and K. As one could notice at first glance

there are no big differences. Furthermore, exclunding cities of medieval

and grid-iron class, cities tends to clusterize showing similar meshedness

values. Medieval cities instead, seems to have a “quasi-constant” value

of M regardless of their number of nodes or edges. This confirms the

idea that meshedness does not depend on the street density nor on the

number of their intersections but only on how these are made.
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Figure 3.3: Meshedness coefficient M as a function of: number of nodes N

(a), number of edges K (b).

3.2.2 Triangles VS Squares

A motif G̃ is a pattern of interconnections occurring either in a undi-

rected or in a directed graph G at a number of times significantly higher

than in randomized version of the graph. As a pattern of interconnec-

tions, a motif G̃ is usually meant as a connected (directed or not) n-node

graph which is a subgraph of G. The concept of motifs was originally

introduced by Alon and coworkers [9, 28, 29, 77, 78], who studied small

n motifs in biological networks but that can be also found in other kind

of networks. The research of significant motifs in a graph G is based on

matching algorithms counting the total number of occurrences of each

n-node subgraph G̃ in the original graph and in its randomized version

considering it statistically significative if the frequence is much higher

than in the random case. In our case we are interested in counting a

particular kind of motifs known as cycles. A cycle on three or more ver-

tices is a simple graph whose vertices can be arranged in a cyclic sequence

in such a way that two vertices are adjacent if they are consecutive in

the sequence, and are nonadjacent otherwise. Cycles can have different

length k (meant as the number of hops one has to do in order to return

to the starting point). In particular, we focus on cycles of length three

(triangles), four (squares) and five (pentagons).
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(a) (b) (c)

Figure 3.4: An example of cycles of length three (a), four (b) and five (c).

To count the number of cycles of a given length k, following the paper

of Alon et al. [79], we use the properties of powers of the adjacency matrix

A. For example, the number of cycles of length three n(C3) is simply

equal to:

n(C3) =
1

6
Tr

(

A3
)

. (3.2)

In general, let G = (N ,L) be a simple undirected graph and let A be

its adjacency matrix. Assume for simplicity that N = {1, . . . , N} and

denote by a
(k)
ij =

(

Ak
)

ij
the elements of the k-th power of A. The trace

Tr
(

Ak
)

of Ak, which is the sum of the entries along the diagonal of Ak,

gives us the number of closed walks of length k in G. If we could also

compute the number of nonsimple closed walks of length k in G we would

easily obtain the number of simple closed paths of length k in G. This

number is just 2k times the number of cycles of length k, n(Ck), in G.

Before describing a way of counting the number of nonsimple closed

walks of length k, where k ≤ 7, in a graph G in O(Nω) time, we need to

introduce few concepts.

Let G1 = (N1,L1) and G2 = (N2,L2) be two simple graphs. A

mapping f : N1∪L1 → N2∪L2 is a homomorphism if for every v ∈ N1

we have f(v) ∈ N2 and for every e = (u, v) ∈ L1 we have f(e) =

(f(u), f(v)) ∈ L2. If f is ontoN2∪L2, we say thatG2 is a homomorphic

image of G1.

A graph H = (NH ,LH) is said to be k-cyclic, for k ≥ 3, if it is
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a homomorphic image of the cycle Ck. The number of different homo-

morphisms from Ck to H is denoted by ck(H). Clearly, H is k-cyclic if

and only if ck(H) > 0. It is not so difficult to check that, in general,

ck(Ck) = 2k for every k ≥ 3. The k-cyclic graphs for 3 ≤ k ≤ 6 are given

in Fig. 3.5. Let nG(H) denote the number of subgraphs of G isomorphic

H1 H 2

H 5

H1 H 2

H3
H4

H 6 H 9
H11

k = 6

k = 3

k = 4

k = 5

Figure 3.5: All the possible k-cycles for 3 ≤ k ≤ 6. Graphs labeled as Hl

represent the nonsimple ones where l is the number of edges.

to H. Clearly, the total number of closed walks of length k in G is:

Tr
(

Ak
)

=
∑

H

ck(H)nG(H) .
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If ck(H) > 0, then H is connected and has at most k edges. Also, H

cannot be a tree on k + 1 vertices as each edge leading to a leaf must

be the image of at least two edges in Ck. Hence, |NH | ≤ k and in fact,

|NH | < k unless H = Ck. We therefore obtain, for an undirected graph

G = (N ,L):

nG(Ck) =
1

2k



Tr
(

Ak
)

−
∑

|NH |<k

ck(H)nG(H)



 . (3.3)

We obtain the following theorem:

Theorem 3.2.1. The number of Ck’s, for 3 ≤ k ≤ 7 in an undirected (or

directed) graph G = (N ,L), can be found in O(Nω) time (with ω = 2.376

as in the Strassen’s algorithm [68]).

Here we do not give the proof of the theorem that can be found in

[79]. Now, in order to normalize the results we need to divide the number

of cycles in the city graph by the number of cycles in the corresponding

GT. We have denoted by Ck the number of cycles of length k in a given

city, and by CGT
k the same number in the corresponding GT. The results

are reported in Tab. 3.2.
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Figure 3.6: Normalized number of squares versus normalized number of
triangles for all the considered cities. Values are taken from
Tab. 3.2.
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Considering the normalized values of triangles, squares and pentagons

(we choose to not get further to limit the computation time during simu-

lations) in Tab. 3.2 we have plotted, for each city, the normalized number

of triangles versus the same quantity but for squares. The outcome is

CITY M C3/C
GT
3 C4/C

GT
4 C5/C

GT
5

1 Ahmedabad 0.262 0.023 0.042 0.020
2 Barcelona 0.275 0.019 0.101 0.019
3 Bologna 0.214 0.015 0.048 0.013
4 Brasilia 0.147 0.029 0.027 0.012
5 Cairo 0.253 0.020 0.043 0.019
6 Irvine 1 0.085 0.035 0.022 0.005
7 Irvine 2 0.014 0.007 0.004 0.001
8 Los Angeles 0.211 0.002 0.075 0.011
9 London 0.249 0.011 0.060 0.020
10 New Delhi 0.154 0.011 0.020 0.011
11 New York 0.348 0.024 0.136 0.028
12 Paris 0.241 0.028 0.063 0.016
13 Richmond 0.279 0.034 0.068 0.022
14 Savannah 0.322 0.002 0.111 0.026
15 Seoul 0.253 0.021 0.051 0.021
16 San Francisco 0.309 0.003 0.148 0.003
17 Venice 0.152 0.016 0.030 0.010
18 Vienna 0.242 0.007 0.063 0.018
19 Washington 0.293 0.026 0.132 0.022
20 Walnut Creek 0.084 0.000 0.011 0.003

Table 3.2: Local properties of the graphs of urban street patterns. We report
the meshedness coefficient M , and the number Ck of cycles of
length k = 3, 4, 5 normalized to the number of cycles in the GT,
CGT
k .

shown in Fig. 3.6. In most of the samples, we have found a small value

of C3/C
GT
3 (as compared, for instance, to C4/C

GT
4 ), denoting that trian-

gles are not common in urban city patterns. This is another proof that

the clustering coefficient C alone is not a good measure to characterize

the local properties of such networks. Walnut Creek, Los Angeles and

Savannah are the cities with the smallest value of C3/C
GT
3 , while Irvine
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1, Richmond, Brasilia and Paris are the cities with the largest value of

C3/C
GT
3 . In 17 samples out of 20 we have found C4/C

GT
4 > C3/C

GT
3 :

Brasilia, Irvine 1 and Irvine 2 are the only cities having a prevalence of

triangles with respect to squares. San Francisco, New York, Washington,

Savannah and Barcelona are the cities with the largest value of C4/C
GT
4

(larger than 0.1). In particular, we found that grid-iron cities, in general,

have a lot more squares than triangles (as one would expect). However,

half of them have a number of triangles which is far superior even if the

number of squares remains “constant”. The modernists ones, instead,

have a ratio between squares and triangles which is close to 1, while in

mixed cities the ratio climbs up to about 2.

Finally, concerning C5/C
GT
5 , we have found three classes of cities.

Samples such as Ahmedabad, Cairo, Seoul and Venice having

C3/C
GT
3
∼= C5/C

GT
5 . Samples such as Brasilia, Irvine and Paris with

C3/C
GT
3 > C5/C

GT
5 , and samples as Los Angeles, Savannah and Vienna

with C3/C
GT
3 < C5/C

GT
5 .

3.3 Global Properties

After discussing the local properties of our city patterns, we deal now

with the global properties, i.e. properties related to the whole system

not with its particular (microscopic) structure. These quantities are the

most suited to be used when one wants to compare graphs of different

categories (for example a biological network with a man made one).

One of the possible mechanisms ruling the growth of an urban system

is the achievement of efficient pedestrian and vehicular movements on a

global scale. This has important consequences on a number of relevant

factors affecting the economic, environmental and social performances of

cities, ranging from accessibility to microcriminality and land uses [61].

The global efficiency of an urban pattern in exchanging goods, people

and ideas should be considered a reference when the capacity of that city

58



3.3 Global Properties

to support its internal relational potential is questioned. It is especially

important to develop a measure that allows the cases of different form

and size, which poses a problem of normalization [60]. We focus our

attention on two of such quantities: efficiency and cost.

3.3.1 Efficiency

The global structural properties of a graph can be evaluated by the

analysis of the shortest paths between all pairs of nodes. In a relational

(unweighted) network the shortest path length between two nodes i and

j is the minumum number of edges to traverse to go from i to j. In a

spatial (weighted) graph, instead we define the shortest path length dij

as the smallest sum of the edge lengths throughout all the possible paths

in the graph from i to j [26, 27, 36]. In this way both the topology and

the geography of the system are taken into account.

A problem arising from the definition of characteristic path length in

Eq. (1.7) is that L diverges if there are disconnected components in the

graph. We already spoke about the possibility to limit the summation

to the nodes belonging to the giant component. Another possible way

to solve this problem is to consider the harmonic mean of the geodesic

lengths, and to define the so-called efficiency of a graph [26, 27]. As a

measure of the efficiency in the communication between the nodes of a

spatial graph, we use the following definition of efficiency E of a graph

G, a measure defined in [26] as:

E =
1

N(N − 1)

∑

i,j ∈N , i 6=j

dEuclij

dij
. (3.4)

Where d[ij is the shortest path length between i and j, and dEuclij is the

distance between nodes i and j along a straight line (Eq. (2.2)). Such

quantity is an indicator of the traffic capacity of a network, and avoids

the divergence in Eq. (1.7), since any pairs of nodes belonging to dis-

connected component of the graph yields a contribution equal to zero to
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the summation in Eq. (3.4) (if two nodes have no paths connecting them

then we set dij =∞). Here we have used a normalization for geographic

networks proposed by Vragovic et al. in [80]. Such a normalization cap-

tures to which extent the connecting route between i and j deviates from

a virtual straight line.

CITY E EMST EGT

1 Ahmedabad 0.818 0.351 0.944
2 Barcelona 0.814 0.452 0.930
3 Bologna 0.799 0.473 0.936
4 Brasilia 0.695 0.503 0.931
5 Cairo 0.809 0.385 0.943
6 Irvine 1 0.755 0.604 0.943
7 Irvine 2 0.374 0.533 0.932
8 Los Angeles 0.782 0.460 0.930
9 London 0.803 0.475 0.936
10 New Delhi 0.766 0.490 0.930
11 New York 0.835 0.433 0.931
12 Paris 0.838 0.473 0.938
13 Richmond 0.800 0.502 0.939
14 Savannah 0.793 0.341 0.922
15 Seoul 0.814 0.444 0.941
16 San Francisco 0.792 0.448 0.893
17 Venice 0.673 0.386 0.943
18 Vienna 0.811 0.423 0.937
19 Washington 0.837 0.452 0.930
20 Walnut Creek 0.688 0.481 0.938

Table 3.3: The efficiency E of each city is compared to the minimum and
maximum values of the efficiency obtained respectively for the
MST and the GT. The cities are labeled from 1 to 20 as in Table
3.1.

In Tab. 3.3 we report the values of efficiency obtained for each city and

for the respective MST and GT. The values of EMST and EGT serve to

normalize the results, being respectively the minimum and the maximum

value of efficiency that can be obtained in a planar graph having the same

number of nodes as in the original graph of the city. One could argue
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that, given a set of nodes, the MST is not unique (this is true especially

in grid-like cities). Notice that, if we change by a little amount the

location of some of the nodes of a graph, we get a MST different from

the previous one. Nevertheless, we have checked that the two MSTs have

a very similar value of efficiency. Notice that Irvine 2 is the only case

in which E < EMST. This is simply due to the fact that Irvine 2 is the

only city whose corresponding graph is not connected. Consequently,

the MST has a smaller number of edges but a higher value of efficiency

because it is, by definition, a connected graph. The main result is that the

cities considered, despite their inherent differences, achieve a relatively

high value of efficiency, which is in most of the cases about 80% of the

maximum value of the efficiency in a planar graph, EGT. Following Buhl

et al. [24] we define the relative efficiency Erel as:

Erel =
E − EMST

EGT − EMST
. (3.5)

3.3.2 Cost

Of course, the counterpart of an increase in efficiency is an increase in

the cost of construction, i.e. an increase in the number and in the length

of the edges. The simplest way to quantify the cost is through Eq. (2.1).

Given a set of N nodes, the shortest (minimal cost) planar graph that

connects all nodes correspond to the MST, while a good approximation

for the maximum cost planar graph is given by the GT. We thus define

a normalized cost measure Wrel. as:

Wrel =
W −WMST

WGT −WMST
. (3.6)

Looking at the results of Tab. 3.4 we find, as expected WMST < W <

WGT. Ahmedabad is the most “expensive” city, while Irvine 1 is the

“cheapest”. If we look at the ratios of W
WMST ,

W
WGT and WGT

WMST we obtain
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CITY W WMST WGT

1 Ahmedabad 121037 54295 281033
2 Barcelona 36179 18600 91843
3 Bologna 51219 25336 140475
4 Brasilia 30910 14748 80328
5 Cairo 84395 37438 200981
6 Irvine 1 11234 7339 34341
7 Irvine 2 28473 15847 92051
8 Los Angeles 38716 17816 96870
9 London 52800 24835 130737
10 New Delhi 32281 15864 94415
11 New York 36172 14885 76441
12 Paris 44109 19894 110428
13 Richmond 62608 24915 147817
14 Savannah 62050 25529 128584
15 Seoul 68121 32016 166520
16 San Francisco 38187 13914 77257
17 Venice 75219 38222 204333
18 Vienna 49935 24404 128584
19 Washington 36342 17639 84042
20 Walnut Creek 25131 14698 76744

Table 3.4: Cost W (expressed in meters) of each city is compared with the
corresponding values of the same quantity in the MST (WMST)
and the GT (WMST). The cities are labeled from 1 to 20 as in
Table 3.1.

as average values of them 2.12, 0.39 and 5.37. This means that, on

average, the cost of a city is about 2 times that of the MST and less than

half (approx 2/5) of its GT. Instead, if we look at the ratio of the cost

of GT and that of MST we can say that a GT approximateli costs more

than five times a MST. In particular, in the case of New Delhi, New York

and Richmond the ratio skims the value of 6.

3.3.3 Results

After discussing all the properties of a planar graph based of an urban

street pattern we want to define a methodology to compare different cities
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from a global point of view. If one asks a driver or a pedestrian to tell

which quantity differentiates a city from another probably he will talk

about something related with the capability to easly reach any point

in the city from any other. On the other side, if one asks an urban

planner which quantity distinguishes a city from another he will, instead,

probably focus more on the smart use of resources. The former opinion

can be more likely referred to the concept of efficiency while the latter

may be related more with the cost. An interesting approach, used also in

many other context [24, 81, 82], is to study the relation between relative

efficiency and cost expressed by Eqs. (3.5), (3.6).
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Cost
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Figure 3.7: A plot of the relative efficiency Erel as a function of the relative
cost Wrel of a city.The plot indicate a correlation between struc-
tural properties and a priori known classes of cities. The point of
coordinates (0,0) would correspond to the cost/efficiency of the
MST while the point (1,1) would correspond to the GT network.
The city of Irvine 2, having coordinates (0.175,-0.398), i.e., e
negative value of relative efficiency, has been plotted instead as
having coordinates (0.175,0).
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By definition the MST has both relative cost and efficiency Wrel =

Erel = 0, while GT has Wrel = Erel = 1. An interesting charachterization

of different city patterns can be obtained by a plot of Erel as a function

of Wrel which is reported in Fig. 3.7. Using the classification made in

Sec. 3.1, the plot Erel vs Wrel has a certain capacity to characterize the

different classes of cities. The plot indicates an overall increasing be-

haviour of Erel as a function of Wrel, with a saturation at Erel ∼ 0.8 for

values of Wrel > 0.3. Grid-iron patterns exhibit a high value of relative

efficiency, about 70–80% of the efficiency of the GT, with a relative cost

which oscillate between 0.24 and 0.4. The three grid-iron cities (New

York, Savannah and San Francisco) with the largest value of efficiency,

Erel ∼ 0.8, have respectively a relative cost equal to 0.342. 0.354 and

0.383. Medieval patterns have in general a lower cost and efficiency than

grid-iron patterns although, in some cases as Ahmedabad and Cairo (the

two medieval cities with the largest efficiency), they can also reach a value

of Erel ∼ 0.8 with a smaller relative cost equal to 0.29. Modernist and

lollipop layouts are those with the smallest value of Wrel but of relative

efficiency too.
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CHAPTER 4

CENTRALITY MEASURES IN NETWORKS OF

URBAN STREET PATTERNS

The idea of centrality was first applied to human communication

by Bavelas [83] who was interested in the characterization of the com-

munication in small groups of people and assumed a relation between

structural centrality and influence in group processes. Since then, vari-

ous measures of centrality have been proposed over the years to quantify

the importance of an individual in a social network [84]. More recently,

the issue of structural centrality has attracted the attention of physicists

[3, 4, 6], who have extended its applications to the realm of biological

and technological networks (see for instance [5, 85, 86]). The standard

centrality measures can be divided into two classes:

- measures based on the idea that the centrality of a node in a net-

work is related to how it is near to other nodes;

- measures based on the idea that central nodes stand between others,

playing the role of intermediary.

Measures such as degree [87] and closeness [88] are examples of mea-

sures of the first kind, while shortest-path [89] or flow [90] betweenness
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are measures of the second kind. Latora et al. proposed a new class

of centrality measures, the so-called delta centrality (or ∆ centralities),

which is a combination of the two main classes of centrality mentioned

above [91].

The concept of centrality can be exported also to networks of ur-

ban street patterns. In this chapter we will discuss some applications

of centrality on city networks made [30, 32, 73, 74, 92]. At the end of

the chapter we discuss some possible applications related with the time

evolution of both structure and centrality in a city [93, 94].

4.1 Centrality in cities and

the Multiple Centrality Assessment

Imagine to be a tourist visiting a foreign city. You are in the down-

town on a sidewalk of a street crossing, stop a person passing by and ask

him/her information about the most important places and route of the

city. After few moments, he/she will probably tell you a list of “impor-

tant” places and routes. A natural question to ask is: “Can we detect

those points without asking people in the city”? A method named Mul-

tiple Centrality Assessment (MCA) developed by Porta, Crucitti et

al. [30, 73, 74] as a methodology for investigation of spatial systems as

complex networks can be of much help.

In this methodology, the evaluation of the importance of a node is

based on the study of a set of different node centrality measures, namely

degree CD, closeness CC , betweenness CB, straightness CS and

information CI .

4.1.1 Classic measures of centrality

Centrality measures will be illustrated and framed in their natural

historical context, that of social networks. A social network is here rep-
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resented as a undirected, non-weighted graph G, consisting of a set of

N nodes and a set of K edges connecting pairs of nodes. The nodes of

the graph are the individuals, the actors of a social group, and the lines

represent the social relations. We will describe all the relations in terms

of the adjacency matrix A.
The degree centrality is based on the idea that important nodes

are those with the largest number of ties to other nodes in the graph.

The degree centrality of a node i is defined as [87]:

CD
i =

ki
N − 1

=
1

N − 1

∑

j∈G

aij , (4.1)

where ki is the degree of node i defined in Eq. (1.1). An example is shown

in Fig. 4.1(a).

The closeness centrality of a node i is based on the concept of

minimum distance or geodesic dij, i.e. the minimum number of edges

traversed to get from i to j [6] and is defined as [84, 88]:

CC
i =

1

Li

=
N − 1
∑

j∈G

dij
, (4.2)

where Li is the average distance from i to all the other nodes. An example

is shown in Fig. 4.1(b).

The communication of two non-adjacent nodes, say j and k, depends

on the nodes belonging to the paths connecting j and k. Consequently,

assuming that the communication travels just along the geodesic, a mea-

sure of the relevance of a given node can be obtained by counting the

number of geodesics going through it, and defining the so called node

betweenness. More precisely, the betweenness of a node i is defined as

[10, 89, 95]:

CB
i =

1

(N − 1)(N − 2)

∑

j,k∈N
i 6=k , j 6=k

njk(i)

njk

, (4.3)

where njk is the number of shortest paths connecting i and k, while njk(i)

is the number of shortest paths connecting i and k and passing through
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i. An example is shown in Fig. 4.1(c). The concept of betweenness can

be extended also to edges. The edge betweenness is defined as the

number of shortest paths between pairs of nodes which run through that

edge [38].

Straightness centrality, CS, originates from the idea that the ef-

ficiency in the communication between two nodes i and j is equal to

the inverse of the shortest path length dij [26]. In the case of a spatial

network embedded into a Euclidean space, the straightness centrality of

node i is defined as:

CS
i =

1

(N − 1)

∑

j ∈N j 6=i

dEucl.ij

dij
, (4.4)

where dEucl is the Euclidean distance between nodes i and j along a

straight line, and we have adopted a normalization proposed for geo-

graphic networks [80]. This measure captures to which extent the con-

necting route between nodes i and j deviates from the virtual straight

route. An example is shown in Fig. 4.1(d). Obviously, in a non-Euclidean

metric space dEucl will be substituted with the distance defined in that

space.

4.1.2 Delta centralities

Delta centrality measures are based on the following idea: the im-

portance of a node (group of nodes) is related to the ability of the network

to respond to the deactivation of the node (group of nodes) from the net-

work. If G is the graph representing the network, the delta centrality (or

∆ centrality), of node i, C∆
i , is defined as:

C∆
i =

(∆P )i
P

=
P [G]− P [G′]

P [G]
, (4.5)

where P is a generic quantity measuring the cohesiveness of the graph,

and (∆P )i is the variation of P under the deactivation (isolation) of node

i, i.e. the removal from the graph of the edges incident with node i. By
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(a) (b) (c)

(d) (e)

Figure 4.1: Examples of centrality measures in a social network: degree cen-
trality CD (a), closeness centrality CC (b), betweenneess cen-
trality CB (c), straightness centrality CS (d) and information
centrality CI (e).

G′ we indicate the graph obtained by removing from G the edges incident

with node i. The only general restrictions on the choice of the quantity

P in the above choice is that (∆P )i ≥ 0 for any node i of the graph. Of

course, the meaning and effectiveness of the centrality measure C∆ will

depend on the choice of P . The simplest possibility is to take P [G] = K,

where K is the number of edges in the graph G. In this case, (∆P )i will

be proportional to the degree and the degree centrality, CD
i , of i. A more

interesting example is to take as P the efficiency E of the graph. This

quantity is based on the assumption that the information/communication

in a network travels along the shortest routes, and that the efficiency in

the communication between two nodes i and j is equal to 1/dij . The

efficiency of a graph G, E[G], has been defined in Eq. (3.4) and measures

the mean flow-rate of information over G [26, 27]. In such case, the

delta centrality of a node i, that we name information centrality CI
i ,

is defined as the relative drop in the network efficiency caused by the
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deactivation of i from the graph G:

CI
i =

(∆E)

E
=

E[G]− E[G′]

E[G]
. (4.6)

An example is shown in Fig. 4.1(e). The removal of some of the edges

affects the communication between various nodes of the graph increasing

the length of the shortest paths, consequently E[G′] ≤ E[G] ensuring a

positive difference. It is immediately seen that CI is somehow correlated

to the three standard measures CD, CC and CB. In fact, the information

centrality of node i depends on ki, since the efficiency E[G′] is smaller

if the number of edges removed from the original graph is larger. CI
i is

correlated to CC
i since the efficiency of a graph is connected to (

∑

i Li)
−1.

Finally CI
i , similarly to CB

i , depends on the number of geodesics passing

by i, but it also depends on the lengths of the new geodesics, the alter-

native paths that are used as communication channels, once the node i is

deactivated. No information about the new shortest paths is contained

in CB
i , and in the other two standard measures.

All the centrality measures defined above can also be extended to

quantify the importance of a group of nodes. Nevertheless such an ex-

tension (and the relative normalization) is not unique and a series of

conventions must be adopted [96]. An example which illustrates the

meaning of each centrality measure introduced until now, in the case of

a social network, is shown in Fig. 4.1. Now, we are ready to discuss

about the Multiple Centrality Assessment and its application to the city

graphs.

4.1.3 Mutiple Centrality Assessment (MCA)

The MCA relies on the idea that, in order to identify the key role

playing subject in a network, many different centrality indexes and mea-

sures must be taken into account. These quantities allow to estabilish

some criteria for comparison analysis of network, and thus making their

70



4.1 Centrality in cities and
the Multiple Centrality Assessment

study easier for the researchers. After centrality measures are calculated

Figure 4.2: An example of Multiple Centrality Assessment. Here we report
the values of betweenneess for the city of Edinburg (UK). The
color of a street represent the value of betweenneess calculated
on its endpoints. Blue represent low values of betweenneess while
red correspond to higher value of it.

for each node of the graph, color/coded values are reported on them,

giving rise to figures like Figs. 4.2 and 4.3. The final layout can either

mapped on nodes as well as edge. In this latter case, the centrality of an

edge is calculated as the average of its couple of endnodes. This simple

procedure highlights a deep character of spatial networks when repre-

sented in such way: one edge exchanges with the system only at nodes,

so its relational properties as a component of the system entirely depends

on its endnodes importance.

The spatial distributions of node centralities can be graphically il-

lustrated by means of GIS supported color-coded maps, in which one of

eight different colors is plotted on each node of the graph. In Fig. 4.3

is shown the case of Cairo. The colors represent eight classes of nodes

with different values of the centrality index C. The classes, defined in

terms of multiples of the standard deviations σ from the average, are:
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[−∞,−3σ], [−3σ,−2σ], [−2σ,−σ], [−σ, 0], [0, σ], [σ, 2σ], [2σ, 3σ], [3σ,∞],

and the corresponding colors are reported in the figure legend. Looking

Figure 4.3: Thematic color map representing the spatial distributions of cen-
trality in Cairo. The four indices of node centrality, (a) closeness
CC , (b) betweenness CB, (c) straightness CS and (d) informa-
tion CI , used in the MCA, are visually compared. Different
colors represent classes of nodes with different values of the cen-
trality index. The classes are defined in terms of multiples of
standard deviations from the average, as reported in the color
legend.

at Fig. 4.3 panel a, CC exhibits a strong trend to group higher scores at

the center of the image. This is due to the artificial boundaries imposed

by the 1-square-mile maps representation and to the same nature of the

closeness centrality. Edge effects are also present, although less relevant,

in all tht other centrality measures except betweenness (see for instance

the contour nodes in Fig. 4.3, panel a,c and d. The spatial distribution
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of CB nicely captures the continuity of prominent urban routes across

a number of intersections, changes in direction and focal urban spots.

This is visible both in Cairo, Fig. 4.3 panel b, and in Edinburg Fig. 4.2.

In some cases, CB clearly identifies the primary structure of movement

channels as different to that of secondary, local routes. This is the case

of Ahmedabad, Seoul, Richmond and Venice.

The spatial distribution of CS depicts both linear routes and focal

areas in the urban system Fig. 4.3 panel c, CS takes high values along

the main axes, even higher at their intersections. Finally CI , although

based on a different concept of centrality, exhibits a spatial distribution

that is in many cases similar to that of CB. This is especially evident in

Cairo (Fig. 4.3 panel d), as well as in Ahmedabad and Venice.

In conclusion, we have shown how the Multiple Centrality Assessment

can represent a powerful tool for an urban planner. In this way, in fact,

one could say if the building of a new road gives benefits to the neigh-

bourhood or if the removal of an esistent street affects the connectivity of

it. MCA has been used also to characterize the structure of many cities

[97, 98] which does not belong to our dataset like Edinburg (Fig. 4.2),

Worcester to cite a few.

4.2 Centrality and Minimum Spanning

Trees: the backbone of a city

In economic geography and in regional planning centrality has been

dominating the scene especially since the Sixties and Seventies. In the

field of urban design, a long-term effort has been spent in order to under-

stand what urban streets and routes would constitute the “skeleton” of

a city. By using this term, we mean the chains of urban spaces that are

most important for the connectedness, liveability and safety at the local

scale [99, 100], and its legibility in terms of human wayfinding [101].
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Scellato et al. provided a tool for the analysis of the backbone of a

complex urban system represented as a spatial (planar) graph [30]. Such

a tool is based on the concept of spanning trees, and on the efficiency

of centrality measures in capturing the essential edges of a graph. To

construct spanning trees based on edge centrality, first one has to localize

high centrality edges, namely the streets that are structurally made to

be traversed (betweenness centrality) or the streets whose deactivation

affects the global properties of the system (information centrality). Of

course other definitions of edge centrality (as for instance closeness or

straightness) can be used as well.

The spanning trees based on edge centrality are called Maximum

Centrality Spanning Trees (MCSTs), i.e. maximum weight spanning

trees where the edge weight is defined as the centrality of the edge. The

reliability of this tool has been tested on the cities of Bologna and San

Francisco as examples of self-organized and planned fabrics.

A single graph can have many different spanning trees. To construct

MCSTs we assign a weight wα to each edge α, which is usually a number

representing how favorable (for instance how central) the edge is, and as-

sign a weight to a spanning tree by computing the sum of the weights of

the edges in that spanning tree. A maximum weight spanning tree

is then a spanning tree with weight larger than or equal to the weight

of every other spanning tree of the graph. It appears evident that it is

possible to define appropriate edge weights with the aim of finding par-

ticular structures capable of connecting every single node of the graph

while minimizing the corresponding total weight. In particular, for each

city we have computed two different MCSTs, respectively based on be-

tweenness and information. The two cases are obtained by respectively

fixing wα = CB
α and wα = CI

α, with α = 1, . . . , K. Since the two central-

ity measures focus on different properties of the network, using both of

them allows us to enforce our analysis.
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In Fig. 4.4 we compare graphically the two MCSTs with the Mini-

mum Length Spanning Trees (MLST). We named it MLST instead

of MST to emphasize the use of length as weight function. We have stud-

ied the “similarities” between MCST and MLST and summarized them

in Tab. 4.1.

Bologna San Francisco

Bet Info Bet Info
% of common
links with MLST

82 75 70 76

% of total cen-
trality in MCST

86 84 82 95

Table 4.1: Comparison between MCST and MLST calculated for the cities
of Bologna and San Francisco. In the first row we report the
% of common links between MLST and MCST calculated using
betweennes (Bet) or information (Info) centrality. In the second
row we report the % of total centrality hold by MCST in the case
of betweenness (Bet) and information (Info) centrality.

The graphical visualization of the maximum centrality trees of Fig. 4.4

is of interest for urban planners since the trees express the uninterrupted

chain of urban spaces that serves the whole system while maximizing

centrality over all edges involved. This method identifies the backbone

of a city as the sub-network of spaces that are most likely to offer the

highest potential for the life of the urban community in terms of popular-

ity, safety and services locations, all factors geographically related with

central places. This is evident in Fig. 4.4, where the comparison between

the trees in the two cities clearly indicates that the spatial subsystem

that keeps together a city in terms of the shortest trip length is not the

same spatial sub-system that does it in terms of the highest centrality.

Another thing is that while the shortest length backbone performs

effectively when applied to planned urban fabrics like San Francisco, in

self-organized evolutionary cases like that of Bologna it does not find

continuous routes nor clearly distinguishes a hierarchy of sub-systems in
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Figure 4.4: Spanning trees of Bologna (above) and San Francisco (below).
From left to right, MLSTs, betweenness-based and information-
based MCSTs.

the network, while the highest information and especially the highest

betweenness backbones do. This is confirmed by results in Tab. 4.1 In a

way, we would say that organic patterns are more oriented to put things

and people together in public space than to shorten the trips from any

origin to any destination in the system, this latter character being more

typical of planned cities.

4.3 Correlation Between Centrality and

Commercial Activities

Suppose to ask your grocer (butcher, fiorist, or whatever kind of sales-

man) why he put his shop in that place instead of another. He will prob-

ably answer that before making a choice he has spent some time around

the streets looking for where was the highest flux of people. “The first

thing, he could say, is where do the people walk. You have to be central,
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4.3 Correlation Between Centrality and
Commercial Activities

people are where centrality is”. Looking at the location of the commer-

cial activities in a city a question pops out quasi immediately: is there an

empirical evidence of correlation between street centrality and economic

activities?

At a glance, one istinctively answers yes to the above question, but

can we give a response based on more solids grounds? In order to study

the correlation between centrality and density of commercial activities

we have to convert discrete information (location of shops) into a con-

tinuous one. This can be done dividing the city surface into square cells

and computing, for each one of them, the Kernel Density Estima-

tor (KDE) which operate a so-called spatial smoothing on the datas.

A kernel function is a non-negative real-valued integrable function K

satisfying the following two requirements [102]:

∫ +∞

−∞

K(u) du = 1 ,

K(u) = K(−u) ∀u .

The KDE uses the density within a range (window) of each observation

to represent the value at the centre of the window itself. Within the

window, the KDE weighs nearby objects more than distant ones, on the

basis of a kernel function. This is necessary in order to respect Tobler’s

first law of geography – that is, “everything is related to everything else,

but near things are more related than distant things” [103]. This property

of distance decay for spatial interaction gave birth to a family of gravity

models following the same notion with strong theoretical foundations

which have many successful applications in urban and regional studies.

By doing spatial smoothing, the KDE generates a density of the events

(discrete points) as a continuous field, and therefore converts the two

datasets and permits the analysis of relationships between them. An

example of this method is shown in Fig. 4.5 which shows the case of

Bologna (Italy) which has been analyzed by Porta et al. in [32].
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Figure 4.5: Density of activity and street centrality: (a) location of com-
mercial and service activities (red dots); (b) kernel density es-
timation (KDE) of commercial and service activities; (c) street
betweenness CB (blue for lower values and red for higher); (d)
KDE of CB.

Looking at the pictures in Fig. 4.5 one could deduce, at first glance,

that a correlation between retail and centrality exist. However, such re-

lation is not completely linear and depends strongly on the kind of com-

mercial activity considered. In fact, as found by Jensen et al. [104, 105],

commercial activities tends to aggregate according to some economic fac-

tors in some cases (luxury goods), while in other cases they tend to place

themselves away from activities of the same category. This kind of stud-

ies are very important in the so-called geomarketing, a discipline which

studies methods to find the best location for opening a shop according

with both economical and geographical information on the system. Now-
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days, such kind of services are offered more and more often to people who

wants to open a new shop by, for example. real estate agency.

4.4 A future development: Time Evolving

Graphs

Up to now we have looked at graphs which are static, i.e. not changing

in time. However, a city is far away from a static object. New roads are

built and old ones are modified continuously. Obviously, the typical times

to produce a tangible effect are longer than a day or a week. Nevertheless,

if one could monitor the system for long enough we will be able to see

changes in the structure of the city. The inclusion of the time dimension,

is not a prerogative of graph of urban street patterns. Other sistems

change their structure during time. For example social networks like

Facebook, Twitter and Linked-in show the same behaviour.

Figure 4.6: Time evolution of the urban pattern of the district named
Groane Park near Milan (Italy). From top left in clockwise sense,
the city structure as it was in: 1833, 1914, 1933, 1955 and 1980.

79



4.4 A future development: Time Evolving Graphs

The study of dynamical evolution of the topology is a hot topic in the

field of complex networks. In the last year, together with Sergio Porta,

Vito Latora and Emanuele Strano, we have started to study the time

evolution of networks based on urban street patterns. The pictures in

Fig. 4.6 represent the street pattern of the urban area of Groane Park,

a district in the region of Lombardia near Milan (Italy). As one can see,

the network does not only grows towards its outer part but also towards

its inner ones. Such growth is not uniform neither isotropic. It would be

very interesting to see if the growth is correlated with some factors like

population or retail densities. This can be done using a biased percolative

growth model like the ones used to interpret leaf growth [106].

Moreover, we are planning to study some structural features which

are relevant from the urbanistic point of view like the evolution of T-

shaped three edges street crossings into four edge ones, and the role of

such points as growth nucleus for other streets. A final aspect to look

at is the evolution of centrality in time. We have found that there are

cases in which a new street inherits the centrality of its parents. These

studies are still in progress and could represent the natural evolution of

the characterization proposed in this thesis.
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CONCLUSIONS

In this thesis we have presented a characterization of the main topo-

logical features of twenty different samples of world cities. These samples

were chosen to take into account different classes of urban fabrics from

self-organized cities to single plan cities.

After introducing the fundamental concepts of graph theory and the

main characteristics of plane graphs, we have shown the methods used

to map a city into a graph. In order to compare the characteristics of

the twenty cities a normalization of results is needed. Since the usual

normalization method cannot be applied because of planarity breaking

a new method has been used. This new methodology introduced by

Buhl et al. [24] requires the introduction of two particular kinds of plane

graph: the minimum spanning tree (MST) and the greedy triangulation

(GT). All the results were normalized with respect to the same quantities

calculated in such graphs.

We have studied first the topological properties of the considered

graphs like number of nodes N , of edges K and average degree 〈k〉. Then
we focused on the local properties such as the meshedness coefficient M

and the number of cycles and on global properties like the cost W and

the efficiency E. In particular, the relation between efficiency and cost
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Conclusions

unveils that: it is not necessary to spend a lot of resources in order to

achieve a high efficiency.

We then focused on centrality measures such as betweenness and in-

formation. The use of these and other quantities to spotlight the im-

portant routes of a city is the main purpose of the multiple centrality

assessment (MCA), a metodology to extract information about a city

through the study of the spatial distribution of centrality. In addition

to this, the same quantities can be also used to extract the skeleton of

a city. We have also used an empirical approach to study the correla-

tion between centrality and retail densities. Last, but not the least, we

discussed about the time evolution of urban pattern graphs. in particu-

lar, represent the new frontier towards which the physicists are moving

in their studies on complex networks. These new studies represent the

forefront of research in the field of complex networks and will bring soon

a flurry of results and novelty to analyze and comprehend also in the

realmm of networks of urban street patterns.
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APPENDIX A

SOURCE CODE FOR COMPUTING GREEDY

TRIANGULATION
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1 /∗ programma per l a r e a l i z z a z i o n e d e l l e Greedy T r i a n g u l a t i o n da i n s e r i r e a l l ’ i n t e r n o
d e l l ’ i n t e r f a c c i a

2 CLI r e a l i z z a t a da Sa l vo S c e l l a t o pe r i c o n t i d e l p r o g e t t o c i t y−form ∗/

4 /∗ Re a l i z z a t o da A l e s s i o C a r d i l l o aka Sp a r i g g i o ∗/

6 /∗ Questo programma s o s t a n z i a lm en t e e ’ l ’ un ione d i t r e programmi Fo r t r an
precedentemente r e a l i z z a t i

7 e compie l e s e g u e n t i o p e r a z i o n i :

9 1) R icava l e c o o r d i n a t e d e i nod i a p a r t i r e d a l l a t a b e l l a d i c o n n e t t i v i t a ’ ;

11 2) Crea un g r a f o completamente connes so a p a r t i r e d a l l e c o o r d i n a t e d e i nod i ;

13 3) Ord ina i l a t i i n manie ra c r e s c e n t e d i l unghezza ;

15 4) Ca l c o l a a p a r t i r e d a l g r a f o completamente connes so l a GT ;

17 ∗/

20 /∗ @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
21 @@ @@
22 @@ IMPORTANTISSIMISSIMO : g l i ID d e i nod i vanno da UNO a NODI @@
23 @@ @@
24 @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@∗/

84



26 /∗ I n c l u d o g l i heade r n e c e s s a r i ∗/

28 #i n c l u d e <s t d i o . h>
29 #i n c l u d e < s t d l i b . h>
30 #i n c l u d e <math . h>
31 #i n c l u d e < s t r i n g . h>

33 /∗ d e f i n i s c o a l c une qu an t i t a ’ f ondamen t a l i ∗/

35 #de f i n e COLONNE 8

37 /∗ d e f i n i s c o anche una ch i a v e pe r i debug ∗/

39 /∗ #def ine DEBUG ∗/

42 /∗CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
43 C
44 C DICHIARAZIONE DELLE VARIABILI DA USARE NEL PROGRAMMA
45 C
46 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC∗/

48 /∗ v a r i a b i l i c o s t a n t i ∗/

50 i n t NODI , LATI ; /∗ numero d i nod i e numero d i l a t i ∗/

52 /∗ e ’ p i u ’ c on v en i e n t e a i f i n i d e l s o r t i n g e d i a l t r e cose immagazz inare i l a t i a l l ’
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i n t e r n o d i un
53 a r r a y d i t i p o s t r u c t i l c u i e l emento c on t i e n e t u t t e l e n f o rmaz i o n i r e l a t i v e a c i a s c un

l a t o ∗/

55 t y p ed e f s t r u c t {
56 i n t nfrom ; /∗ i n d i c e d e l nodo from ∗/
57 f l o a t xa ; /∗ c o o r d i n a t a x d e l nodo from ∗/
58 f l o a t ya ; /∗ c o o r d i n a t a y d e l nodo from ∗/
59 f l o a t xm ; /∗ c o o r d i n a t a x media d e l l a t o ∗/
60 f l o a t ym ; /∗ c o o r d i n a t a y media d e l l a t o ∗/
61 i n t nto ; /∗ i n d i c e d e l noto to ∗/
62 f l o a t xb ; /∗ c o o r d i n a t a x d e l nodo to ∗/
63 f l o a t yb ; /∗ c o o r d i n a t a y d e l nodo to ∗/
64 f l o a t r ; /∗ l unghezza d e l l a t o d i v i s a pe r due ∗/
65 f l o a t m ; /∗ c o e f f i c i e n t e ango l a r e d e l l a t o ∗/
66 } l a t o ; /∗ ho d i c h i a r a t o l a s t r u c t ed anche i s u o i component i ∗/

68 /∗ p u n t a t o r i a l l e s t r u t t u r e d a t i ∗/

70 f l o a t ∗∗ A ; /∗ pun ta to r e a l l ’ a r r a y su c u i va l a t a b e l l a d i c o n n e t t i v i t a ’ ∗/
71 f l o a t ∗∗ B ; /∗ pun ta to r e a l l ’ a r r a y su c u i vanno l e c o o r d i n a t e d e i nod i ∗/
72 l a t o ∗ tconn ; /∗ pun ta to r e a l l ’ a r r a y con t enen t e i l g r a f o completamente connes so ∗/
73 l a t o ∗ gt ; /∗ pun ta to r e a l l ’ a r r a y con t enen t e l a g r eedy t r i a n g u l a t i o n ∗/

76 i n t NFROM, NTO ; /∗ v a r i a b i l i temporanee che contengono g l i i n d i c i d e i nod i from e to
∗/
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77 f l o a t XM, YM, R , M ; /∗ v a r i a b i l i temporanee che contengono d e i v a l o r i p a r z i a l i ∗/

79 i n t i , j , k ; /∗ v a r i a b i l i c o n t a t o r e ∗/

81 i n t l a t i a d d ; /∗ c on t a t o r e pe r v ede r e quan t i l a t i ma l l o c (NODI ∗ s i z e o f ( f l o a t ∗) ) ) ;
82 ho agg i un to a l l a GT ∗/

84 i n t r i g l ; /∗ i n d i c e d e l l a r i g a d e l l a t o agg i un to a l l a GT ∗/
85 i n t l , t ; /∗ nform & nto sono i numer i d e i nod i ∗/
86 i n t dummy ; /∗ v a r i a b i l e che non s e r v a ad un cazzo ∗/
87 f l o a t dummy2 ; /∗ v a r i a b i l e che non s e r v a ad un cazzo ∗/
88 i n t l i n e c o un t , nod i count ; /∗ v a r i a b i l i c o n t a t o r e pe r nod i e l a t i ∗/

91 /∗ v e r i a b i l i pe r i nomi d e i f i l e s ∗/

93 char ∗ f i l e i n ; /∗ v a r i a b i l e con t enen t e i l nome d e l f i l e ∗/
94 char f i l e o u t [ 6 4 ] ; /∗ a r r a y con t enen t e i l nome d e l f i l e i n I /O ∗/
95 i n t l e n ; /∗ v a r i a b i l e con t enen t e l a l unghezza ( i n c a r a t t e r i ) d e l nome d e l f i l e i n

i n pu t ∗/

98 /∗ v a r i a b i l i u s a t e d a l l ’ a l g o r i tmo b ru t e f o r c e pe r i l c a l c o l o d e l l a GT ∗/

100 f l o a t D12 ; /∗ d i s t a n z a t r a i due pun t i medi ∗/
101 f l o a t X ; /∗ c o o r d i n a t a x d e l l ’ e v e n t u a l e i n t e r s e z i o n e ∗/
102 f l o a t Y ; /∗ c o o r d i n a t a x d e l l ’ e v e n t u a l e i n t e r s e z i o n e ∗/
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103 f l o a t AX,BX,CX,DX ; /∗ l e x d e i v e r t i c i da u s a r e n e l l o s t e p 2 d e l l ’ a l g o r i tmo b ru t e
f o r c e ∗/

104 f l o a t AY,BY,CY,DY ; /∗ l e y d e i v e r t i c i da u s a r e n e l l o s t e p 2 d e l l ’ a l g o r i tmo b ru t e
f o r c e ∗/

107 /∗@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
108 @
109 @ DICHIARAZIONE DELLE FUNZIONI
110 @
111 @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@∗/

113 /∗ @@@@@@ FUNZIONE 1 @@@@@@@
114 ques ta f u n z i o n e s e r v e pe r f a r e i l c on f r on t o t r a due e l emen t i d i un
115 a r r a y d i s t r u c t ( i n p a r t i c o l a r e t r a l e l unghe z z e ) ∗/

117 i n t compfunc i n t ( con s t vo i d ∗x , con s t vo i d ∗y )
118 {

120 /∗ ho dovuto mod i f i c a r e que s ta f u n z i o n e pe r che ’ non r i u s c i v a a f a r e i l c on f r on t o
121 t r a q u an t i t a ’ che d i f f e r i v a n o t r a l o r o pe r meno d i 1 ∗/

123 f l o a t d i f f ; /∗ v a r i a b i l e che c on t i e n e l a d i f f e r e n z a t r a i due v a l o r i da e samina r e
∗/

125 d i f f = ( ( l a t o ∗) x )−>r − ( ( l a t o ∗) y )−>r ;
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127 /∗ metto un i f che s i basa su una t o l l e r a n z a ∗/
128 i f ( d i f f == 0 . )
129 { r e t u r n 0 ;}
130 e l s e i f ( ( d i f f >= 0.000000001) && ( d i f f > 0 . ) )
131 { r e t u r n 1 ;}
132 e l s e i f ( ( d i f f <= −0.000000001) && ( d i f f < 0 . ) )
133 { r e t u r n −1 ;}
134 e l s e
135 { r e t u r n 0 ;}

137 /∗ r e t u r n ( ( l a t o ∗) x )−>r − ( ( l a t o ∗) y )−>r ; ∗/
138 /∗ r e t u r n ( i n t ) (∗ x −∗y ) ; ∗/
139 }

142 // i n t main ( ) /∗ d i c h i a r a z i o n e d e l main ” c l a s s i c a ” ∗/
143 i n t main ( i n t a rgc , cha r ∗∗ argv ) /∗ mi permet te d i i n s e r i r e p a r ame t r i i n s i eme a l

nome d e l f i l e e s e g u i b i l e ∗/
144 {

146 /∗ i f che c o n t r o l l a che i l numero d i p a r ame t r i i n s e r i t i s i a q u e l l o c o r r e t t o ∗/

148 i f ( a rgc > 1)
149 {
150 f i l e i n = argv [ 1 ] ; /∗ as segno i l nome d e l f i l e i n i n g r e s s o ∗/
151 }
152 e l s e
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153 {
154 p r i n t f ( ”\n\nATTENZIONE SI E ’ VERIFICATO UN ERRORE NELL ’INSERIMENTO DEL NOME DEL

FILE DA ESAMINARE\n\n” ) ;
155 p r i n t f ( ”LA SINTASSI CORRETTA E ’ . / gt . exe <nome f i l e da esaminare>\n” ) ;
156 p r i n t f ( ”\n Adesso e sco da l programma . . . . . . \n” ) ;
157 e x i t ( 1 ) ; /∗ causo l ’ u s c i t a da l programma ∗/
158 }

161 /∗CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
162 C
163 C DETERMINAZIONE DEL NUMERO DI NODI E LATI DEL GRAFO DA ESAMINARE
164 C
165 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC∗/

167 /∗ ap e r t u r a f i l e d i i n pu t ∗/

169 FILE ∗ p f i l e i n ;

171 #i fde f DEBUG
172 p r i n t f ( ” s t o l eggendo i l f i l e %s \n” , f i l e i n ) ; /∗ v e r i f i c a qua l e f i l e s t o

l eggendo ∗/
173 #endi f

175 /∗ Aggiungo un i f pe r c o n t r o l l a r e se i l pun t a t o r e a l f i l e e ’ s t a t o a s s egna to ∗/

177 i f ( ( p f i l e i n = fopen ( f i l e i n , ” r ” ) ) == NULL )
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178 {
179 p r i n t f ( ” I l f i l e %s non puo ’ e s s e r e ape r t o \n” , f i l e i n ) ;
180 p r i n t f ( ”\n Adesso e sco da l programma . . . . . . \n” ) ;
181 e x i t ( 1 ) ; /∗ causo l ’ u s c i t a da l programma ∗/
182 }

184 /∗ metto un c i c l o wh i l e i n modo da l e g g e r e f i n o a l l a f i n e d e l f i l e ∗/

186 /∗ dato che i v a l o r i l e t t i vanno mess i i n una mat r i c e debbo u s a r e un i n d i c e
187 pe r ” i n d i r i z z a r e ” i d a t i n e l pos to ” g i u s t o ” ∗/

189 /∗ i n i z i a l i z z o i c o n t a t o r i ∗/

191 l i n e c o u n t = nod i count = 0 ;

193 wh i l e ( ! f e o f ( p f i l e i n ) )
194 {
195 f o r ( j=0 ; j < COLONNE ; j++)
196 {
197 f s c a n f ( p f i l e i n , ”%f ” , &dummy2) ;

199 /∗ metto un i f pe r r i c a v a r e i l numero d i nod i ∗/

201 i f ( ( ( j==1) | | ( j==4) ) && ( dummy2 > nod i count ) )
202 {
203 nod i count = ( i n t ) dummy2 ;
204 }
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205 }
206 f s c a n f ( p f i l e i n , ”\n” ) ; /∗ mi s e r v e pe r andare a capo ∗/
207 l i n e c o u n t++ ; /∗ i n c r emento i l numero d i l i n e e con t a t e ∗/
208 }

210 /∗ Una v o l t a l e t t i i v a l o r i n e c e s s a r i ch iudo i l f i l e ∗/

212 f c l o s e ( p f i l e i n ) ;

214 /∗CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
215 C
216 C ALLOCAZIONE DELLE STRUTTURE DATI
217 C
218 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC∗/

220 /∗ i n i z i a l i z z o i v a l o r i d e l numero d i nod i e l a t i ∗/

222 NODI = nod i count ;
223 LATI = l i n e c o u n t ;

225 /∗ metto un i f pe r c o n t r o l l a r e che i l numero d i nod i non s i a t roppo grande ∗/

227 i f (NODI > 10000)
228 {
229 p r i n t f ( ”\n\nATTENZIONE IL NUMERO DI NODI E ’ MAGGIORE DI 10000 LA MEMORIA

POTREBBE RISULTARE INSUFFICIENTE . . . . \ n\n” ) ;
230 }
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232 /∗ c r eo g l i a r r a y i n manie ra d inamica ∗/

234 A = ( f l o a t ∗∗) ( ma l l o c ( LATI ∗ s i z e o f ( f l o a t ∗) ) ) ;

236 f o r ( i = 0 ; i < LATI ; i++)
237 {
238 A[ i ] = ( f l o a t ∗) ( ma l l o c (COLONNE∗ s i z e o f ( f l o a t ) ) ) ;
239 }

242 B = ( f l o a t ∗∗) ( ma l l o c (NODI ∗ s i z e o f ( f l o a t ∗) ) ) ;

244 f o r ( i = 0 ; i < NODI ; i++)
245 {
246 B[ i ] = ( f l o a t ∗) ( ma l l o c (3∗ s i z e o f ( f l o a t ) ) ) ;
247 }

250 tconn = ( l a t o ∗) ( ma l l o c ( ( (NODI∗(NODI−1) ) /2) ∗ s i z e o f ( l a t o ) ) ) ;

252 gt = ( l a t o ∗) ( ma l l o c ( ( (3∗NODI)−6) ∗ s i z e o f ( l a t o ) ) ) ;

256 /∗CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
257 C
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258 C LETTURA DEL FILE IN INGRESSO
259 C
260 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC∗/

263 /∗ ap e r t u r a f i l e d i i n pu t ∗/

265 #i fde f DEBUG
266 p r i n t f ( ” s t o l eggendo i l f i l e %s \n” , f i l e i n ) ; /∗ v e r i f i c a qua l e f i l e s t o

l eggendo ∗/
267 #endi f

269 /∗ Aggiungo un i f pe r c o n t r o l l a r e se i l pun t a t o r e a l f i l e e ’ s t a t o a s s egna to ∗/

271 // i f ( ( p f i l e i n = fopen ( f i l e 1 , ” r ”) ) == NULL )
272 i f ( ( p f i l e i n = fopen ( f i l e i n , ” r ” ) ) == NULL )
273 {
274 p r i n t f ( ” I l f i l e %s non puo ’ e s s e r e ape r t o \n” , f i l e i n ) ;
275 p r i n t f ( ”\n Adesso e sco da l programma . . . . . . \n” ) ;
276 e x i t ( 1 ) ; /∗ causo l ’ u s c i t a da l programma ∗/
277 }

279 /∗ metto un c i c l o wh i l e i n modo da l e g g e r e f i n o a l l a f i n e d e l f i l e ∗/

281 /∗ dato che i v a l o r i l e t t i vanno mess i i n una mat r i c e debbo u s a r e un i n d i c e
282 pe r ” i n d i r i z z a r e ” i d a t i n e l pos to ” g i u s t o ” ∗/
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284 i = 0 ; /∗ i n i z i a l i z z o l ’ i n d i c e ∗/

286 wh i l e ( ! f e o f ( p f i l e i n ) )
287 {
288 f o r ( j=0 ; j < COLONNE ; j++)
289 {
290 f s c a n f ( p f i l e i n , ”%f ” , &A[ i ] [ j ] ) ;

292 }
293 f s c a n f ( p f i l e i n , ”\n” ) ; /∗ mi s e r v e pe r andare a capo ∗/
294 i++ ; /∗ i n c r emento i ∗/
295 }

297 /∗ metto un i f pe r v ede r e quante r i g h e ho l e t t o ∗/

299 i f ( i != LATI )
300 {
301 p r i n t f ( ”HO LETTO %d r i ghe , ne dovevo l e g g e r e %d \n” , i , LATI ) ;
302 }

304 /∗ Una v o l t a l e t t i i v a l o r i n e c e s s a r i ch iudo i l f i l e ∗/

306 f c l o s e ( p f i l e i n ) ;

309 /∗@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
310 @@ @@
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311 @@ FASE 1 DEL PROGRAMMA @@
312 @@ @@
313 @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@∗/

315 #i fde f DEBUG
316 /∗ Con t r o l l o d e l l a c o r r e t t a l e t t u r a d e l f i l e i n i n g r e s s o
317 mi f a c c i o stampare l e pr ime 5 r i g h e c o s i ’ sono apposto ∗/

319 p r i n t f ( ”\ nCon t r o l l o d e l l a c o r r e t t a l e t t u r a f i l e d i i n pu t \n\n” ) ;

321 f o r ( i= 0 ; i < 5 ; i++)
322 {
323 f o r ( j= 0 ; j < COLONNE ; j++)
324 {
325 p r i n t f ( ”%f \ t ” , A [ i ] [ j ] ) ;
326 }

328 p r i n t f ( ”\n” ) ; /∗ vado a capo ∗/
329 }
330 #endi f

333 /∗ i n i z i a l i z z o l ’ a r r a y i n c u i vanno a f i n i r e l e c o o r d i n a t e d e i nod i ∗/

335 f o r ( i =0; i<NODI ; i++)
336 {
337 B[ i ] [ 0 ] = B[ i ] [ 1 ] = B[ i ] [ 2 ] = 0 . ; /∗ i n i z i a l i z z o l ’ a r r a y ∗/
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338 }

340 #i fde f DEBUG
341 /∗ Stampa d e l v e t t o r e B pe r c o n t r o l l a r e l ’ avvenuta i n i z i a l i z z a z i o n e ∗/
342 p r i n t f ( ”\n\nStampa d e l v e t t o r e B pe r c o n t r o l l o i n i z i a l i z z a z i o n e \n\n” ) ;
343 f o r ( i =0; i <5; i++)
344 {
345 p r i n t f ( ”%f \ t %f \ t %f \n” , B [ i ] [ 0 ] , B [ i ] [ 1 ] , B [ i ] [ 2 ] ) ;
346 }
347 p r i n t f ( ”\n\n” ) ;
348 #endi f

350 /∗CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
351 C
352 C RICERCA DELLE COORDINATE DEI NODI
353 C
354 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC∗/

356 p r i n t f ( ”\nSto ce rcando l e c o o r d i n a t e d e i nod i . . . \ n\n” ) ;

358 f o r ( i = 1 ; i <= NODI ; i++)
359 {
360 f o r ( j=0 ; j < LATI ; j++)
361 {
362 i f ( ( i n t ) (A [ j ] [ 1 ] ) == i )
363 {
364 B[ ( i −1) ] [ 0 ] = ( f l o a t ) i ;
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365 B[ ( i −1) ] [ 1 ] = A[ j ] [ 2 ] ;
366 B[ ( i −1) ] [ 2 ] = A[ j ] [ 3 ] ;
367 }
368 e l s e i f ( ( i n t ) (A [ j ] [ 4 ] ) == i )
369 {
370 B[ ( i −1) ] [ 0 ] = ( f l o a t ) i ;
371 B[ ( i −1) ] [ 1 ] = A[ j ] [ 5 ] ;
372 B[ ( i −1) ] [ 2 ] = A[ j ] [ 6 ] ;
373 }
374 }

376 /∗ v e r i f i c a d e l l a s o s t i t u z i o n e ∗/
377 #i fde f DEBUG
378 p r i n t f ( ”\ n l e c o o r d i n a t e d i %d sono : \ t x= %f \ t y= %f \n” , ( i n t ) B [ ( i −1) ] [ 0 ]

,B [ ( i −1) ] [ 1 ] , B [ ( i −1) ] [ 2 ] ) ;
379 #endi f
380 }

382 /∗ c on c l u s a l a f a s e 1 a v v i s o che i n i z i o a f a r e l a f a s e 2 ∗/
383 #i fde f DEBUG
384 p r i n t f ( ”\nHO CONCLUSO LA FASE 1 DEL PROGRAMMA . . . . . INIZIO LA FASE 2 \n\n” ) ;
385 #endi f

387 /∗@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
388 @@ @@
389 @@ FASE 2 DEL PROGRAMMA @@
390 @@ @@
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391 @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@∗/

393 p r i n t f ( ”\ n I n i z i o i c o n t i pe r f a r e i l g r a f o t o t a lmen t e connes so . . . . abb i p a z i e n z a \
n\n” ) ;

395 /∗ i n i z i a l i z z o i l c o n t a t o r e ∗/

397 k = 0 ;

399 /∗ metto un dopp io c i c l o f o r pe r c r e a r e t u t t i i l a t i n e c e s s a r i ∗/

401 f o r ( i = 0 ; i < NODI ; i++)
402 {
403 f o r ( j= ( i +1) ; j < NODI ; j++)
404 {
405 NFROM = ( i +1) ;
406 NTO = ( j +1) ;
407 R = s q r t ( (pow ( ( B[ j ] [ 1 ] − B[ i ] [ 1 ] ) , 2) ) + ( pow( ( B[ j ] [ 2 ] − B[ i ] [ 2 ] )

, 2) ) ) / 2 . ;
408 XM = ( ( B[ i ] [ 1 ] + B[ j ] [ 1 ] ) / 2 . ) ;
409 YM = ( ( B[ i ] [ 2 ] + B[ j ] [ 2 ] ) / 2 . ) ;

411 /∗ c a l c o l o i l c o e f f i c i e n t e ango l a r e ma c i metto un i f pe r e v i t a r e g l i
i n f i n i t i ∗/

412 i f ( ( ( ( B [ j ] [ 1 ] − B[ i ] [ 1 ] ) <= 0.000001) && ( ( B[ j ] [ 2 ] − B[ i ] [ 2 ] ) >= 1) ) | |
( ( B [ j ] [ 1 ] − B[ i ] [ 1 ] ) == 0 . ) )

413 {
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414 M = 99999. ; /∗ s e e ’ i n f i n i t o c i metto ques to v a l o r e ∗/
415 }
416 e l s e
417 {
418 M = ( ( B[ j ] [ 2 ] − B[ i ] [ 2 ] ) / ( B[ j ] [ 1 ] − B[ i ] [ 1 ] ) ) ;
419 }

422 /∗ Tra s f e r imen t o d e i r i s u l t a t i s u l l a l i s t a f i n a l e ∗/

424 tconn [ k ] . nfrom = NFROM ;
425 tconn [ k ] . xa = B[ i ] [ 1 ] ;
426 tconn [ k ] . ya = B[ i ] [ 2 ] ;
427 tconn [ k ] . xm = XM ;
428 tconn [ k ] . ym = YM ;
429 tconn [ k ] . nto = NTO ;
430 tconn [ k ] . xb = B[ j ] [ 1 ] ;
431 tconn [ k ] . yb = B[ j ] [ 2 ] ;
432 tconn [ k ] . r = R ;
433 tconn [ k ] .m = M ;

435 k++ ; /∗ agg i o r no i l v a l o r e d i k ∗/
436 }
437 }

440 #i fde f DEBUG
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441 /∗ pe r v e r i f i c a r e se ho t r a s f e r i t o c o r r e t t amen t e i d a t i s u l l ’ a r r a y d i s t r u c t ∗/
442 p r i n t f ( ”\n\n@@@@@ CHECK TRASFERIMENTO DATI SU STRUCT @@@@\n\n” ) ;
443 f o r ( i=0 ; i < 5 ; i++)
444 {
445 p r i n t f ( ” tconn [%d ] = \ t %d \ t %f \ t %f \ t %f \ t %f \ t %d \ t %f \ t %f \ t %f \ t

%f \n” , i , tconn [ i ] . nfrom , tconn [ i ] . xa , tconn [ i ] . ya , tconn [ i ] . xm ,
tconn [ i ] . ym , tconn [ i ] . nto , tconn [ i ] . xb , tconn [ i ] . yb , tconn [ i ] . r ,
tconn [ i ] .m ) ;

446 }
447 #endi f

449 p r i n t f ( ”\n\nHO FINITO DI CALCOLARE TUTTI I LATI DEL GRAFO COMPLETAMENTE CONNESSO\n
” ) ;

450 p r i n t f ( ”ADESSO MI APPRESTO AD ORDINARLI IN MODO CRESCENTE\n\n” ) ;

453 /∗@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
454 @@ @@
455 @@ FASE 3 DEL PROGRAMMA @@
456 @@ @@
457 @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@∗/

459 /∗ I n i z i o d e l l a p rocedu ra d i ord inamento d e i l a t i t r o v a t i ∗/

461 /∗ Occor re d i s p o r r e i l a t i i n una s t r u t t u r a d i t i p o a r r a y d i s t r u c t e n e l l a s t r u c t
462 metto t u t t e l e q u an t i t a ’ c a r a t t e r i s t i c h e d e l s i n g o l o l a t o ( ovve ro l e co l onne

d e l

101



463 f i l e d i p a r t en za )

465 Una v o l t a f a t t o questo , l a n c i o i l s o r t i n g d i ques to a r r a y usando l a r o u t i n e q s o r t

467 l a r o u t i n e q s o r t vuo l e i l pun t a t o r e ad una f u n z i o n e d i comparaz ione e ’ n e c e s s a r i o
468 qu i n d i s c r i v e r e l a f u n z i o n e d i comparaz ione t a l e che que s ta compar i s o l o un campo
469 d e l l a s t r u c t i n p a r t i c o l a r e l a l unghezza d e l l a t o . ∗/

471 /∗ ch iamata d e l l a f u n z i o n e q s o r t ∗/

473 q s o r t ( tconn , ( ( (NODI) ∗ (NODI−1) ) /2) , s i z e o f ( l a t o ) , compfunc i n t ) ;

475 #i fde f DEBUG
476 /∗ v e r i f i c a se ho t r a s f e r i t o c o r r e t t amen t e i d a t i s u l l ’ a r r a y d i s t r u c t ∗/
477 p r i n t f ( ”\n\n@@@ HO FINITO DI ORDINARE LA STRUCT CONTROLLO I CAMBIAENTI @@@@\n\n

” ) ;
478 f o r ( i=0 ; i < 5 ; i++)
479 {
480 p r i n t f ( ” tconn [%d ] = \ t %d \ t %f \ t %f \ t %f \ t %f \ t %d \ t %f \ t %f \ t %f \ t

%f \n” , i , tconn [ i ] . nfrom , tconn [ i ] . xa , tconn [ i ] . ya , tconn [ i ] . xm ,
tconn [ i ] . ym , tconn [ i ] . nto , tconn [ i ] . xb , tconn [ i ] . yb , tconn [ i ] . r ,
tconn [ i ] .m ) ;

481 }
482 #endi f

485 /∗@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
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486 @@ @@
487 @@ FASE 4 DEL PROGRAMMA @@
488 @@ @@
489 @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@∗/

491 p r i n t f ( ”\nINIZIO IL CALCOLO DELLA GT ABBI PAZIENZA . . . . \ n\n” ) ;

494 /∗ i n i z i o d e l c a l c o l o d e l l a GT mediante una p rocedu ra d i t i p o b ru t e f o r c e ∗/

496 /∗ ALGORITMO BRUTE FORCE PER GT

498 c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

500 c I n i z i o d e l l ’ a l g o r i tmo b ru t e f o r c e by V i to La to r . Per v e l o c i z z a r e i l t u t t o
501 e pe r da re un senso a l l a Greedy T r i a n g u l a t i o n b i s ogna av e r e i d a t i o r d i n a t i
502 pe r l unghezza c r e s c e n t e d e l r a g g i o ! ! ! ! ∗/

505 /∗ i l pr imo l a t o va s i c u r amen t e p r e s o g l i a l t r i p o i seguono ∗/

507 #i fde f DEBUG
508 p r i n t f ( ”\n\nAggiungo i l pr imo l a t o \n\n” ) ;
509 #endi f

511 gt [ 0 ] . nfrom = tconn [ 0 ] . nfrom ;
512 gt [ 0 ] . xa = tconn [ 0 ] . xa ;
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513 gt [ 0 ] . ya = tconn [ 0 ] . ya ;
514 gt [ 0 ] . xm = tconn [ 0 ] . xm ;
515 gt [ 0 ] . ym = tconn [ 0 ] . ym ;
516 gt [ 0 ] . nto = tconn [ 0 ] . nto ;
517 gt [ 0 ] . xb = tconn [ 0 ] . xb ;
518 gt [ 0 ] . yb = tconn [ 0 ] . yb ;
519 gt [ 0 ] . r = tconn [ 0 ] . r ;
520 gt [ 0 ] .m = tconn [ 0 ] .m ;

522 #i fde f DEBUG
523 p r i n t f ( ”\n\nProcedo con l ’ agg i un ta d e g l i a l t r i l a t i . . . . \n\n” ) ;
524 #endi f

526 /∗ i n s e r i s c o un c i c l o wh i l e che i t e r a f i n c h e ’ i l numero d i l a t i a g g i u n t i non
527 e ’ p a r i a 3N − 6 pe r f a r l o uso un con t a t o r e che mi d i c e a che punto sono
528 a r r i v a t o n e l l ’ a gg i unge r e l a t i ∗/

530 /∗ i n i z i a l i z z o i l c o n t a t o r e ∗/

532 l a t i a d d = 1 ;

534 /∗ i n i z i a l i z z o anche l ’ i n d i c e che mi d i c e a qua l e r i g a d e l l ’ a r r a y c o r r i s p o n d e i l
l a t o agg i un to ∗/

535 r i g l = 0 ;

537 wh i l e ( l a t i a d d < ( (3∗NODI) − 6) ) /∗ l o metto minore e non d i v e r s o c o s i ’ sono
s i c u r o ∗/

104



538 {

540 /∗ i n s e r i s c o un dopp io c i c l o f o r pe r f a r e i l p a r s i n g d e i l a t i ” e l e g i b i l i ” ∗/

542 f o r ( j = ( r i g l +1) ; j < ( (NODI ∗ (NODI − 1) ) / 2) ; j++)
543 {
544 f o r ( i = 0 ; i < l a t i a d d ; i++) /∗ c o n t r o l l a bene i l i m i t i d i i t e r a z i o n e d i

ques to c i c l o ∗/
545 {
546 /∗ Ca l c o l o l a d i s t a n z a t r a i p un t i med i i d12 e l a x d e l l ’ e v e n t u a l e
547 i n t e r s e z i o n e anche se computaz iona lmente non conv i en e ∗/

549 AX = gt [ i ] . xa ;
550 AY = gt [ i ] . ya ;
551 BX = gt [ i ] . xb ;
552 BY = gt [ i ] . yb ;

554 CX = tconn [ j ] . xa ;
555 CY = tconn [ j ] . ya ;
556 DX = tconn [ j ] . xb ;
557 DY = tconn [ j ] . yb ;

559 /∗L ’ a l g o r i tmo usa l a p o s i z i o n e che Xa<Xb e Xc<Xd
560 Occor re un i f che v e r i f i c h i t a l e c o n d i z i o n e ed even tua lmente l a r e a l i z z i

∗/

562 i f (BX < AX)
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563 {
564 AX = gt [ i ] . xb ;
565 AY = gt [ i ] . yb ;
566 BX = gt [ i ] . xa ;
567 BY = gt [ i ] . ya ;
568 }

570 i f (DX < CX)
571 {
572 CX = tconn [ j ] . xb ;
573 CY = tconn [ j ] . yb ;
574 DX = tconn [ j ] . xa ;
575 DY = tconn [ j ] . ya ;
576 }

578 /∗ Ca l c o l o d e l l a d i s t a n z a t r a i due pun t i med i i d e i s egment i ∗/

580 D12 = ( s q r t ( pow ( ( gt [ i ] . xm − tconn [ j ] . xm ) ,2 ) + pow ( ( gt [ i ] . ym − tconn [ j
] . ym ) ,2 ) ) ) ;

583 /∗ Ca l c o l o d e l l e c o o r d i n a t e X e Y d e l l ’ i n t e r s e z i o n e t r a l e r e t t e ba sa t e
s u i l a t i ∗/

585 X = ( ( gt [ i ] . ym − ( gt [ i ] .m ∗ gt [ i ] . xm ) − ( tconn [ j ] . ym − ( tconn [ j ] .m
∗ tconn [ j ] . xm ) ) ) / ( tconn [ j ] .m − gt [ i ] .m ) ) ;
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587 Y = ( ( ( tconn [ j ] .m ∗ gt [ i ] . ym ) − ( gt [ i ] .m ∗ tconn [ j ] . ym ) + ( ( tconn
[ j ] .m ∗ gt [ i ] .m ) ∗ ( tconn [ j ] . xm − gt [ i ] . xm ) ) ) / ( tconn [ j ] .m − gt
[ i ] .m ) ) ;

589 /∗ Qui c i sono i check da f a r e su ogn i c and i da to
590 c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
591 c STEP1
592 c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/

594 i f ( D12 > ( ( gt [ i ] . r + tconn [ j ] . r ) ) )
595 {
596 /∗ I l c and i da to v i e n e a c c e t t a t o ∗/
597 #i fde f DEBUG
598 p r i n t f ( ”\ n i l a t i sono d i s t a n t i , pas so a v a n t i . . . \ t %d \ t %d \ t %d\n

\n” , i , j , l a t i a d d ) ;
599 #endi f

601 goto nove ;
602 }

604 /∗−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
605 c STEP2
606 c−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/

608 /∗ Con t r o l l o pe r i l a t i ” p a r a l l e l i ” ∗/

610 e l s e i f ( ( gt [ i ] .m == tconn [ j ] .m ) && ( ( (BX == DX) && (BY == DY) ) ) )
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611 {
612 #i fde f DEBUG
613 p r i n t f ( ”\ n i l l a t o va s c a r t a t o pe r che ’ p a r a l l e l o \ t %d \ t %d \ t %d\n\

n” , i , j , l a t i a d d ) ;
614 #endi f

616 goto s e i ;
617 }
618 e l s e i f ( ( gt [ i ] .m == tconn [ j ] .m ) && ( ( (AX == CX) && (AY == CY) ) ) )
619 {
620 #i fde f DEBUG
621 p r i n t f ( ”\ n i l l a t o va s c a r t a t o pe r che ’ p a r a l l e l o \ t %d \ t %d \ t %d\n\

n” , i , j , l a t i a d d ) ;
622 #endi f

624 goto s e i ;
625 }

627 /∗ Check pe r i l a t i con e s t r em i c o i n c i d e n t i ∗/

629 e l s e i f ( (BX == CX) && (BY == CY) )
630 {
631 /∗ Se B c o i n c i d e con C i l c and i da to v i e n e a c c e t t a t o ∗/
632 #i fde f DEBUG
633 p r i n t f ( ”\nB c o i n c i d e con C , pas so a v a n t i \ t %d \ t %d \ t %d\n\n” , i ,

j , l a t i a d d ) ;
634 #endi f
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636 goto nove ;
637 }
638 e l s e i f ( (AX == CX) && (AY == CY) )
639 {
640 /∗ Se A c o i n c i d e con C i l c and i da to v i e n e a c c e t t a t o ∗/
641 #i fde f DEBUG
642 p r i n t f ( ”\nA c o i n c i d e con C , pas so a v a n t i \ t %d \ t %d \ t %d\n\n” , i ,

j , l a t i a d d ) ;
643 #endi f

645 goto nove ;
646 }
647 e l s e i f ( (AX == DX) && (AY == DY) )
648 {
649 /∗ Se A c o i n c i d e con D i l c and i da to v i e n e a c c e t t a t o ∗/
650 #i fde f DEBUG
651 p r i n t f ( ”\nA c o i n c i d e con D, pas so a v a n t i \ t %d \ t %d \ t %d\n\n” , i ,

j , l a t i a d d ) ;
652 #endi f

654 goto nove ;
655 }
656 e l s e i f ( (BX == DX) && (BY == DY) )
657 {
658 /∗ Se B c o i n c i d e con D i l c and i da to v i e n e a c c e t t a t o ∗/
659 #i fde f DEBUG
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660 p r i n t f ( ”\nB c o i n c i d e con D, pas so a v a n t i \ t %d \ t %d \ t %d\n\n” , i ,
j , l a t i a d d ) ;

661 #endi f

663 goto nove ;
664 }
665 /∗ Check pe r i l a t i ” s t r a n i ”
666 c Quando uno d e i due l a t i e o o r i z z o n t a l e o v e r t i c a l e b i s ogna f a r e

s c a t t a r e
667 c ques to check . B i sogna pero t e n e r e conto d e l f a t t o che i l a t i sono

o r i e n t a t i
668 c r i s p e t t o a l l e c o o r d i n a t e x . Questo comporta uno sdoppiamento d e i check
669 c a causa d e l l e d i v e r s e c o o r d i n a t e y d e i l a t i . I n o l t r e i l check s i basa

su un dopp io
670 c c o n t r o l l o s i a su X che su Y che a l t r i m e n t i c r e e r e bb e d e i bug n e l l a

c a p a c i t a
671 c d e l programma d i r i l e v a r e l a t i con i n t e r s e z i o n i s t r a n e . Questo ha

c o n s e n t i t o
672 c d i e l i m i n a r e anche i l check s u i l a t i a c r o c e . ∗/

674 /∗ @@@@@ Caso 1 @@@@@ ∗/

676 e l s e i f ( ( ( (AX == BX) && (CY > DY) ) && (AY > BY) ) && ( ( (X >= CX)
&& (X <= DX) ) && ( ( (Y <= CY) && (Y >= DY) ) && ( (Y <= AY) && (Y >=
BY) ) ) ) )

677 {
678 #i fde f DEBUG
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679 p r i n t f ( ”\ n I l a t i s i i n t e r s e c a n o i n modo s t r a no 1a \ t %d \ t %d \ t %d
\n\n” , i , j , l a t i a d d ) ;

680 #endi f

682 goto s e i ;
683 }
684 e l s e i f ( ( ( (AX == BX) && (CY > DY) ) && (AY < BY) ) && ( ( (X >= CX)

&& (X <= DX) ) && ( ( (Y <= CY) && (Y >= DY) ) && ( (Y >= AY) && (Y <=
BY) ) ) ) )

685 {
686 #i fde f DEBUG
687 p r i n t f ( ”\ n I l a t i s i i n t e r s e c a n o i n modo s t r a no 1b \ t %d \ t %d \ t %d

\n\n” , i , j , l a t i a d d ) ;
688 #endi f

690 goto s e i ;
691 }

693 /∗ @@@@@ Caso 2 @@@@@ ∗/

695 e l s e i f ( ( ( (AX == BX) && (DY > CY) ) && (AY < BY) ) && ( ( (X >= CX)
&& (X <= DX) ) && ( ( (Y <= DY) && (Y >= CY) ) && ( (Y >= AY) && (Y <=
BY) ) ) ) )

696 {
697 #i fde f DEBUG
698 p r i n t f ( ”\ n I l a t i s i i n t e r s e c a n o i n modo s t r a no 2a \ t %d \ t %d \ t %d

\n\n” , i , j , l a t i a d d ) ;
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699 #endi f

701 goto s e i ;
702 }
703 e l s e i f ( ( ( (AX == BX) && (DY > CY) ) && (AY > BY) ) && ( ( (X >= CX)

&& (X <= DX) ) && ( ( (Y <= DY) && (Y >= CY) ) && ( (Y <= AY) && (Y >=
BY) ) ) ) )

704 {
705 #i fde f DEBUG
706 p r i n t f ( ”\ n I l a t i s i i n t e r s e c a n o i n modo s t r a no 2b \ t %d \ t %d \ t %d

\n\n” , i , j , l a t i a d d ) ;
707 #endi f

709 goto s e i ;
710 }

712 /∗ @@@@@ Caso 3 @@@@@ ∗/

714 e l s e i f ( ( (CY == DY) && (AY > BY) ) && ( ( ( (X >= AX) && (X <= BX) )
&& ( (X >= CX) && (X <= DX) ) ) && ( (Y >= BY) && (Y <= AY) ) ) )

715 {
716 #i fde f DEBUG
717 p r i n t f ( ”\ n I l a t i s i i n t e r s e c a n o i n modo s t r a no 3a \ t %d \ t %d \ t %d

\n\n” , i , j , l a t i a d d ) ;
718 #endi f

720 goto s e i ;
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721 }
722 e l s e i f ( ( (CY == DY) && (BY > AY) ) && ( ( ( (X >= CX) && (X <= DX) )

&& ( (X >= AX) && (X <= BX) ) ) && ( (Y >= AY) && (Y <= BY) ) ) )
723 {
724 #i fde f DEBUG
725 p r i n t f ( ”\ n I l a t i s i i n t e r s e c a n o i n modo s t r a no 3b \ t %d \ t %d \ t %d

\n\n” , i , j , l a t i a d d ) ;
726 #endi f

728 goto s e i ;
729 }

731 /∗ @@@@@ Caso 4 @@@@@ ∗/

733 e l s e i f ( ( (AY == BY) && (CY > DY) ) && ( ( ( (X >= AX) && (X <= BX) )
&& ( (X >= CX) && (X <= DX) ) ) && ( (Y <= CY) && (Y >= DY) ) ) )

734 {
735 #i fde f DEBUG
736 p r i n t f ( ”\ n I l a t i s i i n t e r s e c a n o i n modo s t r a no 4a \ t %d \ t %d \ t %d

\n\n” , i , j , l a t i a d d ) ;
737 #endi f

739 goto s e i ;
740 }
741 e l s e i f ( ( (AY == BY) && (CY < DY) ) && ( ( ( (X >= CX) && (X <= DX) )

&& ( (X >= AX) && (X <= BX) ) ) && ( (Y >= CY) && (Y <= DY) ) ) )
742 {
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743 #i fde f DEBUG
744 p r i n t f ( ”\ n I l a t i s i i n t e r s e c a n o i n modo s t r a no 4b \ t %d \ t %d \ t %d

\n\n” , i , j , l a t i a d d ) ;
745 #endi f

747 goto s e i ;
748 }

750 /∗ @@@@@ Caso 5 @@@@@ ∗/

752 e l s e i f ( ( ( (AY == BY) && (CX == DX) ) && ( (DY > CY) ) ) && ( ( (X >=
AX) && (X <= BX) ) && ( (Y <= DY) && (Y >= CY) ) ) )

753 {
754 #i fde f DEBUG
755 p r i n t f ( ”\ n I l a t i s i i n t e r s e c a n o i n modo s t r a no 5a \ t %d \ t %d \ t %d

\n\n” , i , j , l a t i a d d ) ;
756 #endi f

758 goto s e i ;
759 }
760 e l s e i f ( ( ( (AY == BY) && (CX == DX) ) && ( (DY < CY) ) ) && ( ( (X >=

AX) && (X <= BX) ) && ( (Y >= DY) && (Y <= CY) ) ) )
761 {
762 #i fde f DEBUG
763 p r i n t f ( ”\ n I l a t i s i i n t e r s e c a n o i n modo s t r a no 5b \ t %d \ t %d \ t %d

\n\n” , i , j , l a t i a d d ) ;
764 #endi f
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766 goto s e i ;
767 }

769 /∗ @@@@@ Caso 6 @@@@@ ∗/

771 e l s e i f ( ( ( (CY == DY) && (AX == BX) ) && ( (BY > AY) ) ) && ( ( (X >=
CX) && (X <= DX) ) && ( (Y <= BY) && (Y >= AY) ) ) )

772 {
773 #i fde f DEBUG
774 p r i n t f ( ”\ n I l a t i s i i n t e r s e c a n o i n modo s t r a no 6a \ t %d \ t %d \ t %d

\n\n” , i , j , l a t i a d d ) ;
775 #endi f

777 goto s e i ;
778 }
779 e l s e i f ( ( ( (CY == DY) && (AX == BX) ) && ( (BY < AY) ) ) && ( ( (X >=

CX) && (X <= DX) ) && ( (Y <= AY) && (Y >= BY) ) ) )
780 {
781 #i fde f DEBUG
782 p r i n t f ( ”\ n I l a t i s i i n t e r s e c a n o i n modo s t r a no 6b \ t %d \ t %d \ t %d

\n\n” , i , j , l a t i a d d ) ;
783 #endi f

785 goto s e i ;
786 }
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788 /∗ @@@@@ Check pe r l e i n t e r s e z i o n i @@@@@ ∗/

790 e l s e i f ( ( (X >= AX) && (X <= BX) ) && ( (X >= CX) && (X <= DX) ) )
791 {
792 /∗ I l c and i da to v i e n e s c a r t a t o pe r che ’ s i i n t e r s e c a con a l t r i l a t i ∗/
793 #i fde f DEBUG
794 p r i n t f ( ”\ n i l a t i s i i n t e r s e c a n o s c a r t o i l l a t o \ t %d \ t %d \ t %d\n\

n” , i , j , l a t i a d d ) ;
795 #endi f

797 goto s e i ;
798 }

800 /∗ i l l a t o i n esame ha supe r a t o t u t t i i t e s t ∗/

802 nove :
803 dummy = dummy ; /∗ g l i f a c c i o f a r e una cosa che non s e r v e ad un cazzo ∗/

805 } /∗ f i n e d e l f o r su i ∗/

807 /∗ i l l a t o v i e n e a c c e t t a t o ∗/
808 #i fde f DEBUG
809 p r i n t f ( ”\ n I l l a t o e ’ d e f i n i t i v am e n t e a c c e t t a t o \ t %d \ t %d \ t %d\n\n” , i ,

j , l a t i a d d ) ;
810 #endi f

812 /∗ Viene memor izzata l a r i g a d e l l a t o a c c e t t a t o ∗/
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814 r i g l = j ;

816 /∗ Tra s f e r imen t o d e l l a t o d a l l a l i s t a tconn a gt ∗/

818 gt [ l a t i a d d ] . nfrom = tconn [ j ] . nfrom ;
819 gt [ l a t i a d d ] . xa = tconn [ j ] . xa ;
820 gt [ l a t i a d d ] . ya = tconn [ j ] . ya ;
821 gt [ l a t i a d d ] . xm = tconn [ j ] . xm ;
822 gt [ l a t i a d d ] . ym = tconn [ j ] . ym ;
823 gt [ l a t i a d d ] . nto = tconn [ j ] . nto ;
824 gt [ l a t i a d d ] . xb = tconn [ j ] . xb ;
825 gt [ l a t i a d d ] . yb = tconn [ j ] . yb ;
826 gt [ l a t i a d d ] . r = tconn [ j ] . r ;
827 gt [ l a t i a d d ] .m = tconn [ j ] .m ;

829 goto uno ;

831 s e i :
832 dummy = dummy ; /∗ g l i f a c c i o f a r e un ’ op e r a z i o n e che non s e r v e ad un cazzo ∗/

834 } /∗ f i n e d e l f o r su j ∗/

837 uno :
838 /∗ pr ima d i c h i u d e r e i l c i c l o agg i o r no i l c o n t a t o r e ∗/
839 l a t i a d d ++ ;
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841 #i fde f DEBUG
842 p r i n t f ( ”\n\ n i l numero d i l a t i a g g i u n t i e ’ %d\n\n” , l a t i a d d ) ;
843 #endi f

845 } /∗ f i n e d e l c i c l o wh i l e ∗/

847 /∗CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
848 C
849 C SCRITTURA DEL FILE IN USCITA
850 C
851 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC∗/

853 /∗ e s e c u z i o n e d i a l c une o p e r a z i o n i s u l l e s t r i n g h e pe r c r e a r e i l nome d e l f i l e i n
u s c i t a ∗/

855 l e n=s t r l e n ( f i l e i n ) ; /∗ c a l c o l o l a l unghezza d e l nome d e l f i l e e l a metto i n una
v a r i a b i l e ∗/

857 s t r n c p y ( f i l e o u t , f i l e i n , ( l e n − 4 ) ) ; /∗ cop i o l a s t r i n g a i n i n q u e l l a out
∗/

859 s t r c a t ( f i l e o u t , ”−g reedy . dat ” ) ; /∗ concateno l a s t r i n g a o t t e nu t a con l a
d e s i n e n z a v o l u t a ∗/

861 /∗ Aper tu ra d e l f i l e i n u s c i t a ∗/
862 FILE ∗ p f i l e o u t ;
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864 #i fde f DEBUG
865 p r i n t f ( ” s t o s c r i v e n d o i l f i l e %s \n” , f i l e o u t ) ; /∗ v e r i f i c a qua l e f i l e s t o

l eggendo ∗/
866 #endi f

868 /∗ i f pe r c o n t r o l l a r e se i l pun t a t o r e a l f i l e e ’ s t a t o a s s egna to ∗/

870 i f ( ( p f i l e o u t = fopen ( f i l e o u t , ”w” ) ) == NULL )
871 {
872 p r i n t f ( ” I l f i l e %s non puo ’ e s s e r e ape r t o \n” , f i l e o u t ) ;
873 p r i n t f ( ”\n Adesso e sco da l programma . . . . . . \n” ) ;
874 e x i t ( 1 ) ; /∗ causo l ’ u s c i t a da l programma ∗/
875 }
876 e l s e
877 {
878 #i fde f DEBUG
879 p r i n t f ( ”\nSto s c r i v e n d o l a l i s t a f i n a l e . . . . . \ n\n” ) ;
880 #endi f

882 /∗ Tra s f e r imen t o d e i r i s u l t a t i s u l f i l e f i n a l e ∗/

884 f o r ( i=0 ; i < ( (3∗NODI) − 6) ; i++)
885 {
886 /∗ Dato che non t u t t i i l a t i r e a lmen t e a p p a r t e n e n t i a l l a GT non possono

e s s e r e a gg i u n t i , a l l o r a metto un i f
887 pe r f i l t r a r e q u e l l i completamente v u o t i ∗/
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889 i f ( ( gt [ i ] . r ) != 0 . ) /∗ mi s e r v e a stampare su f i l e s o l o q u e l l i non n u l l i ∗/
890 {
891 f p r i n t f ( p f i l e o u t , ”%d \ t %f \ t %f \ t %d \ t %f \ t %f \ t %f \n” , gt [ i ] .

nfrom , gt [ i ] . xa , gt [ i ] . ya , gt [ i ] . nto , gt [ i ] . xb , gt [ i ] . yb , (2∗ ( gt
[ i ] . r ) ) ) ;

892 }

894 /∗ mi f a c c i o stampare l e pr ime c i nque r i g h e s o l o pe r c o n t r o l l o ∗/
895 #i fde f DEBUG
896 i f ( i < 5)
897 {
898 p r i n t f ( ”%d \ t %f \ t %f \ t %d \ t %f \ t %f \ t %f \n” , gt [ i ] . nfrom , gt [ i

] . xa , gt [ i ] . ya , gt [ i ] . nto , gt [ i ] . xb , gt [ i ] . yb , (2∗ ( gt [ i ] . r ) ) )
;

899 }
900 #endi f
901 }
902 }

904 /∗ c h i u s u r a d e l f i l e ∗/

906 f c l o s e ( p f i l e o u t ) ;

908 p r i n t f ( ”\nNO FINITO\n\n” ) ;

910 } /∗ f i n e d e l main ∗/
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RINGRAZIAMENTI

Una volta un amico mi disse: “i ringraziamenti vanno scritti bene

perché sono l’unica cosa che la gente legge in una tesi” (chi doveva ca-

pire ha capito). Dietro questa semplice, quanto mai assoluta verità si

nasconde un compito assai difficile (almeno per me).

Dall’ultima volta in cui ho dovuto scrivere dei ringraziamenti (ovvero

quattro anni fa) di acqua sotto i ponti ne è passata davvero tanta: ho

meno capelli; sono più vecchio (ma più bello); sono stato, anche se solo

per una volta, capitano della mia squadra; sono ancora l’unico cretino tra

i miei colleghi con cui sono entrato all’università a non essermi laureato

(oggi ci ho messo finalmente una pezza a ’sta storia); ecc ecc . . .

Di persone sulla mia strada ne ho incontrate molte ma alcune di que-

ste hanno davvero lasciato un segno attraverso un gesto, una parola o

anche solo semplicemente con il loro comportamento. Prima di passare

alle “dediche personalizzate” volevo direGRAZIE a tutte quel-

le persone che ho conosciuto e che mi hanno dato una mano, piccola o

grande che sia, per arrivare fin dove sono arrivato.

Volevo anche ringraziare tutti quelli che invece hanno per cos̀ı dire “re-

mato contro” e che tramite il loro contributo hanno reso il mio percorso

meno facile. Alla facciazza vostra ce l’ho fatta lo stesso (uno a zero e
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palla al centro).

Ma bando alle ciance e veniamo a noi (capisco che siete curiosi ma dopo

un pò uno si scoccia). Vorrei ringraziare:

- Vito Latora. Per avermi introdotto al mondo delle reti complesse e

per tutte le cose che mi ha insegnato in questi cinque (o sono sei?)

anni passati sotto la sua guida. Guardando indietro nel tempo

posso dire di essere davvero fortunato ad aver avuto un “capo”

come lui dal quale ho potuto apprendere un sacco di cose sia a livello

scientifico ma soprattutto umano. Una volta mi disse che per lui

io ero una “scommessa”, spero che che l’abbia vinta la scommessa

ed anche se cos̀ı non fosse lo ringrazio lo stesso per aver creduto in

me.

- Mia mamma e mio fratello. La prima per tutto l’amore che profon-

de nei suoi pranzetti ipercalorici e per il supporto che mi ha dato in

questi anni con frasi del tipo:“Bravo, ma quand’è che fai il prossimo

esame?” (detta, appena dopo aver dato un esame).

Il secondo invece per l’amorevole modo con cui mi cazzia un gior-

no si e l’altro pure (a volte con più sessioni giornaliere) con il fine

ultimo di rendermi appena appena più furbo.

- Giuseppe Angilella. Quest’uomo noto per essere il santo protettore

dello studente incasinato, piombò nella vita del sottoscritto per ra-

gioni di tipo “informatico” e da allora non se n’è più voluto andare.

Occorrerebbe un intero libro per poter descrivere il rapporto che mi

lega a lui, fatto di irruzioni nei rispettivi uffici al solo scopo di man-

darsi reciprocamente a quel paese o di sguardi e pacche sulle spalle

che sottendono intere discussioni. Una specie di fratello maggiore.

(Vaff...).
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- Jesus, Roberta, Enzo e Maria. Cosa sarebbe la vita se al lavoro

fossi circondato da gente con cui non vai d’accordo? Un vero in-

ferno. Invece, io ho sempre avuto la fortuna di lavorare con gente

con cui vado d’accordo (in realtà sono io quello da sopportare). Un

grazie quindi ad Jesus per tutte le cose che mi ha insegnato e per

le mille avventure passate insieme in questi anni. A Roberta, per

la pazienza con cui accetta il ruolo di “vittima” dei miei pesantissi-

mi scherzi nonché per le consulenze sulle cose BIO. Enzo, per tutte

quelle volte in cui resto a bocca aperta a vederlo letteralmente “dia-

logare” col computer e per il ruolo di spalla negli scherzi a Roberta

ed infine a Mariuccia, per tutte le splendide serate e jam-sessions

passate durante la sua permanenza qua a Catania. Lavorare con

voi è davvero uno spasso.

- Secondo me una cosa bella dell’università è quel clima di spensie-

ratezza che si respira quando fai le cose (almeno nei primi anni

prima di cominciare ad “invecchiare”). Vorrei quindi rivolegere

un ringraziamento speciale ai componenti del cosiddetto “quintet-

to etilo-lescano” coi quali ho trascorso momenti bellissimi (i nostri

fegati ringraziano):

– Gabriele: perché, nonostante sia emigrato nella terra dei tor-

tellini, non perde occasione per farsi sentire e per il continuo

e costante supporto che mi da. Grande appasionato di man-

ga e carne di cavallo come me è uno dei pochi da cui accetto

consigli e critiche (per altro sempre azzeccatissimi).

– Danilo: c’è una canzone dei Punkreas che recita: “eeeehhhh

. . . prvaticamente mi sono pervso”. Lui rappresenta l’unico

caso al mondo di polentone convertito a terrone con successo

ed in buona misura il (de)merito di ciò è mio. Mi piace ri-

cordare le ore passate sui libri a cercare di risolvere esercizi, il
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cui risultato veniva puntualmente “aggiustato” mediante l’ap-

plicazione del celeberrimo metodo Jaccarino, intervallati da

una citazione cinematografica, letteraria o musicale che sia.

Grazie, vecchio trapano!

– T~änøo (ad Enna si scrive cos̀ı): l’unico uomo ad avere più

soprannomi dei granelli di sabbia della spiaggia di Palm Beach

in California. Grandissimo compagno di bevute (e per questo

conosciuto anche come figlio illegittimo di Bacco) e campione

mondiale nei giochi Nomi, Città, Cose e Briscola in 5. Dotato

di una pazienza infinita (non ci ha ancora ucciso nonostante

abbiamo coniato per lui qualcosa come 126.000 epiteti diversi),

non perde occasione per passarti a trovare quando torna in

quel del centro del mondo (Enna) avendo scelto di truffare

inconsapevoli risparmiatori con teorie economiche assurde in

quel di Milano.

– Salvo: grandissimo fan del leggendario Pino Puggelli è quello

che sembra non colparci nulla col suo atteggiamento “tran-

quillo”, ma che sotto sotto ne combina di cotte e crude. Lui

tra una canzone dei Led Zeppelin e un’altra degli Oasis ama

sfoggiare citazioni di carattere sovietico. È anche quello che

una volta a casa di T~änøo propose di sfilare un cavatappi da

una bottiglia di Lancers usando la termodinamica. Per me

resterai sempre quello di A’VOUGLIA.

- Ma la vita non è solo lavoro (per fortuna). Quando penso ai miei

amici posso tranquillamente affermare di essere una persona fortu-

nata. Nel film The big Kahuna c’è una frase che dice: “Renditi

conto che gli amici vanno e vengono. Ma alcuni, i più preziosi, ri-

marranno”. Tra i miei amici preziosi vorrei ringraziare Paola per

gli innumerevoli caffé e le piacevoli chiaccerate, Cristina per avermi
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eletto quale unico beneficiario dei suoi “in bocca al lupo”, Stefano

con cui ho condiviso le fatiche degli esami degli ultimi anni e che

non perde occasione per passarmi a trovare in ufficio, i miei com-

pagni di classe Alex e Rauni che non hanno mai smesso di fare il

tifo per me dal giorno in cui le nostre strade si sono divise. Una

menzione speciale va ai miei compagni di squadra Antonio, Peppe

puglia, Luca, Peppe spina ed al mio allenatore Michelangelo veri e

propri compagni d’armi per i quali le parole non bastano.

- Un ringraziamento davvero particolare va ad Angela. Una sola

parola: mi sopporta. Sembra poco ma vi assicuro che non è da

tutti riuscire a farlo. Questo perché oltre ad essere uno stronzo

di prima categoria, ho anche qualcosa come 26 milioni di difetti.

Nonostante tutto questo, lei è sempre là al mio fianco cercando

ogni giorno, mollichina a mollichina, di farmi diventare una persona

migliore. Grazie per tutto quello che fai.

- Per finire un ringraziamento per due persone che purtroppo non

potranno leggerlo. Vorrei ringraziare Antonino Copia per avermi

insegnato ad affrontare la vita sempre col sorriso sulle labbra. La

sua spensieratezza, simpatia (non l’ho mai visto triste eccetto che

una volta) ed il suo apparente non voler prendere sul serio nulla,

anche quando la vita non è “tenera” con te (e non succede di ra-

do), rappresentano ormai una parte integrante (ed importante) del

mio carattere e di questo gli sarò eternamente grato. Vorrei rin-

graziare anche il Prof. Giovanni Raciti per avermi impartito quella

che io ritengo la lezione numero 1 dal titolo: PASSIONE. La

passione è quella cosa che ti permette di: stare 12 ore in ufficio sen-

za sentirne il peso semplicemente perché stai facendo quello che ti

piace; lavorare sabati, domeniche, giorno, notte e di essere comun-

que contento; percepire uno stipendio schifosamente basso o di non
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percepirne affatto ma di essere comunque li perché non sapresti che

altro fare. Lo ringrazio anche perché è stata una delle primissime

persone (prima ancora di Vito) ad aver visto qualcosa in me che

meritasse il suo appoggio e la sua fiducia. Se non ci fosse stato lui

non sarei dove sono oggi, grazie grazie grazie.

Prima di lasciarvi, per premiarvi della vostra pazienza nella lettura di
questo papello, volevo farvi dono di tre citazioni a cui sono particolar-
mente affezionato e che utilizzo spesso come luce guida nella vita di tutti
i giorni.

E cos̀ı, nelle operazioni militari:
Se conosci il nemico e conosci te stesso,
Nemmeno in cento battaglie ti troverai in pericolo.
Se non conosci il nemico ma conosci te stesso,
Le tue possibilità di vittoria sono pari a quelle di sconfitta.
Se non conosci né il nemico né te stesso,
Ogni battaglia significherà per te sconfitta certa.

Sun Tzu – L’arte della guerra

The spotted hawk swoops by and accuses me, he complains of
my gab and my loitering.

I too am not a bit tamed, I too am untraslatable,
I sound my barbaric yawp over the roofs of the world.

Walt Whitman – Foglie d’erba

Ogni ostacolo, ogni muro di mattoni, è li per un motivo
preciso. Non è li per escluderci da qualcosa, ma per offrirci la
possibilità di dimostrare in che misura ci teniamo. I muri di
mattoni sono li per fermare le persone che non hanno
abbastanza voglia di superarlo. Sono li per fermare gli altri.

Randy Paush – The last lecture
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