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Prólogo

Cuando se trata de entender el funcionamiento de un sistema complejo

conviene enfocar su descripción hacia las interacciones entre sus constituyen-

tes elementales, en lugar de tratar de modelar al detalle la dinámica de cada

uno de ellos. Este enfoque se justi�ca en que nos interesa capturar el comporta-

miento colectivo del mismo (sus propiedades macroscópicas). Por esta razón,

las herramientas computacionales y el enfoque teórico de la física estadísti-

ca son herramientas particularmente adecuadas para estudiar estos sistemas

y sobre este paradigma han proliferado en las últimas décadas multitud de

modelos físicos sencillos que permiten extraer información sobre una gran va-

riedad de fenómenos colectivos que aparecen más allá del contexto de la física

tradicional, �invadiendo� campos y disciplinas como la biológia, la sociología,

la epidemiología, etc [1, 2].

A lo largo de la última década, el estudio de la física estadística de sis-

temas complejos ha avanzado enormemente, entre otras razones, gracias a la

incorporación de las herramientas proporcionadas por la ciencia de las redes

complejas, una nueva disciplina que tiene su origen en la teoría (matemática) de

grafos fundada a mitad del siglo XVIII por Leonard Euler. La gran abundan-

cia de datos sobre los patrones de interacción en múltiples sistemas complejos

reales (desde las redes de transporte e Internet hasta el cerebro humano) y el

hecho de que estos patrones sobre quién interactúa con quién no se puedan

explicar como un resultados del azar, ha demandado una generalización de los

modelos propuestos por la teoría de grafos y su incorporación al modelado de

los procesos dinámicos que gobiernan el funcionamiento de los sistemas com-

plejos. En este sentido, la ciencia de redes complejas nos ha proporcionado

una herramienta su�cientemente general para abordar problemas de diferentes

disciplinas permitiendo codi�car los elementos de un sistema y la relaciones

entre ellos mediante un grafo donde los elementos son los nodos de la red y las

interacciones sus enlaces [3, 4].

A pesar de los éxitos conseguidos durante la última década, el avance en

la captación de nuevos datos sobre las interacciones en sistemas naturales, so-
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ciales y tecnológicos, ha obligado recientemente a una reformulación de los

modelos de redes usados hasta la fecha. Asimismo, fenómenos tan importan-

tes, como por ejemplo el gran apagón ocurrido en Italia en el año 2007, han

puesto de mani�esto de�ciencias en modelado de sistemas y redes complejas,

como por ejemplo la interdependencia de dos o más redes formando metaredes,

la coexistencia de diferentes tipos de interacciones entre los mismos constitu-

yentes de una red (redes multicapa), el carácter temporal de las interacciones

(redes tempo-variantes), etc. Estos nuevos tipos de formulaciones presentan

propiedades que pueden ser muy diferentes de las encontradas en las redes

constituyentes (para las redes inter-dependientes o las redes multicapa) o en

las red acumulada (caso de las redes tempo-variantes). El salto conceptual al

que estamos asistiendo en el campo de la ciencia de redes obliga también a

reformular los modelos dinámicos y volver a estudiar los procesos colectivos

asociados. Algunos de estos fenómenos como por ejemplo la emergencia de la

cooperación [5], la difusión/control de epidemias [6�8], el estudio de la resisten-

cia que un sistema mani�esta cuando se enfrenta a un ataque o un fallo [9�11]

han sidos estudiados y ampliados recientemente a los nuevos (y adaptados)

marcos conceptuales de la ciencia de redes [12�14].

En esta línea, el trabajo desarrollado a lo largo de esta tesis doctoral, tie-

ne como uno de sus objetivos principales el estudio y desarrollo de modelos

que permitan observar nuevos fenómenos y comportamientos colectivos deri-

vados de las nuevas formas y modos de interacción mencionadas anteriormente.

Asimismo, y en consonancia con el devenir de la ciencia de redes, otro obje-

tivo fundamental de esta tesis ha sido la manipulación y análisis de grandes

cantidades de datos procedentes de sistemas complejos reales con el �n de

poder comparar empíricamente los resultados previstos por los modelos. En

resumen, a lo largo de todo la etapa doctoral, se ha querido explorar tanto las

fronteras, como regiones ya previamente exploradas en busca de nuevos escena-

rios que pongan de mani�esto la importancia de incorporar las características

fundamentales de interacción entre los elementos de un sistema complejo. Los

problemas investigados pueden ser agrupados bajo uno (o más) de estos temas:

Teoría evolutiva de juegos.

Sincronización.

Difusión de epidemias.

Codi�cación de interacciones de diferente naturaleza mediante estructu-

ras multicapas.

Tratamiento de interacciones que varían en el tiempo a través de redes

con estructura tempo-variante.
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Esta memoria de tesis doctoral pretende ser un resumen de los principales

resultados logrados durante todo el recorrido de la etapa doctoral. Por ello,

esta memoria de tesis ha sido redactada como compendio de publicaciones. Sin

embargo, se ha querido dotar a la memoria de un capitulo inicial donde se

introducen los conceptos básicos utilizados en los trabajos presentados para

facilitar la comprensión del lector. Los capítulos sucesivos a la introducción

general están constituidos por los artículos, colocados de forma que los tres

ingredientes básicos de nuestros sistemas (coevolución, multiplexidad y interac-

ciones tempo-variantes) se visiten en orden (casi) secuencial. Finalmente, esta

memoria acaba con las conclusiones de la tesis, donde se resumen los resulta-

dos principales logrados en cada artículo y se delinean las posibles direcciones

futuras.
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Chapter 1

Introduction & objectives

1.1. Going beyond complex networks

If we look back at the history of complex systems science, and complex

networks in particular, a lot of water has �owed beneath the bridge since

1736 when the mathematician Leonard Euler published the solution to the

Könisberg bridges problem (formulated as �nding a round trip that traversed

each of the Könisberg's seven bridges exactly once; cf. Fig 1.1(a)). Since then,

many steps forward have been made [3, 4, 15�19], and the use of graph theory to

study those systems whose properties depend more on the interactions among

their elements rather than on the microscopic composition of the element itself,

has allowed to �nd the answer to a lot of questions in many di�erent disciplines

spanning from social science to applied mathematics. Graphs (or networks)

are thus a general, yet powerful, means of representing patterns of connections

or interactions between the parts of the system.

Across the years, the science of complex networks has bene�ted enormously

from the wide range of viewpoints brought to it by practitioners from so many

di�erent disciplines. At the same time, it has also su�ered of this interdisci-

plinary character since knowledge about networks is dispersed across the sci-

enti�c community and researchers in one area often do not have ready access

to discoveries made in another.

In the last �fteen years, complex networks have been used with success to

tackle many problems allowing to �nd an answer to questions such as: why

epidemics spread very rapidly across the world? Which are the interaction

schemes among people in the era of social networks and smartphones? To �nd

the answer to questions like these, a multidisciplinary approach is needed. As

time passed, the models presented became more and more re�ned in order to
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(a) (b)

Figure 1.1: A schematic view of the Könisberg bridges: (a) map view and (b) the

corresponding graph.

capture as many real-system characteristics as possible. However, this must

not be seen as just a mere complication of the models. The fact is that, in

order to solve more complex problems, one cannot use anymore those simple

models (or rely on just one kind of approach) developed so far, but rather use

two, or more, interdependent approaches at the same time. As an example,

in the forecast of Epidemics, one has to use concepts belonging to applied

mathematics, computer science, and epidemiology of course. In the light of

that, the last few years have seen the �ourishing of a new generation of models

in all the �elds where complex networks have been previously used. Another

reason behind the urge for a new generation of models is related with the

appearance of a huge amount of data coming from the opportunity to crawl

many technological infrastructure like: mobile phones [20], GPS tracks [21]

or temporal trade data among countries [22] just to cite a few. The models

developed so far are unable to account for the richness of phenomena observed

in such systems, and the big data challenge cannot be tackled unless we perform

the step forward that we have just talked about.

In the last �ve years, we have witnessed the appearance of more sophis-

ticate coevolutive models to understand phenomena that depends on many

factors at the same time; the inclusion of time dimension in the description

of interactions among the nodes of a network [15]; the expansion to multiple

kind of interactions and interconnected sub-systems in the description of re-

alistic systems [12, 23�26]. These, and other, new perspectives have allowed

and will allow us to shed light on many open issues and will consolidate the

role of complex systems science as a powerful, and multidisciplinary, way to

understand the world in which we live in.
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1.2. Objectives

1.2.1. Main objectives

The doctorate of the candidate began during one of the most tumultuous

moments experienced by complex network science over the past ten years.

Thus, at its beginning, more than one line of research were available to choose.

From one side, it would have been possible to follow the route of continuing

the study of coevolutive dynamical processes acting on top of complex topolo-

gies. On the other side, instead, the appearance of new formalisms (multilevel,

time-varying) like those introduced above, o�ered very intriguing perspectives

in terms of new problems to tackle/solve. For this reason, it has been decided

to �ride the wave� generated by the appearance of such new formalisms, while

continuing, at the same time, the exploration of the �previously known land-

scape� of dynamics on top of complex network topologies. Lastly, an aspect

to do not underestimate has been that related to the analysis/manipulation of

big amounts of data. Such aspect will play in the near future a prominent role

in the empirical comparison aimed at validating the existing models as well

as the new ones. Summing up, the main objectives pursued during the whole

duration of the doctorate are:

Objective 1

Extension of known models used to study complex systems to achieve a

more realistic description of them.

Objective 2

Retrieval, analysis, and management of big amount of data originated

by real complex systems.

Objective 3

Study emerging properties and phenomena in systems described using

the new frameworks of time-varying and multilevel interactions.

1.2.2. Objectives of each paper and contribution of the candi-

date

Keeping in mind the trail indicated by the main objectives listed above,

it is possible to go deeper and comment more in detail the objectives pur-

sued by each one of the papers, connecting them with the general ones of the

whole doctorate. At the same time, we also highlight which aspects of the

research work (design of the models, analysis of the results, preparation of

the manuscript, and presentation of the results at conferences/public events)



4 Chapter 1. Introduction & objectives

involved the active contribution of the candidate. So, in conclusion, we have

that:

1. In Chap. 3, we investigate the e�ects that a coevolutionary approach

based on evolutionary game theory and time-varying interactions, the

latter generated by the motion of the agents, may have on the emer-

gence of cooperation (objectives 1 & 3). The contributions given by the

candidate concern the design of the agent-based simulations, the analy-

sis of their outcome/results, the preparation of part of the manuscript,

and the presentation of the results at an international conference named

�Net-Works 2011 �, held in El Escorial (Madrid), Spain, in October 2011.

2. In Chap. 4, we follow the path shown in the previous point, and continue

the study about the e�ects that time-varying interactions have on the

emergence of cooperation. However, in this case, we further extended

the description used above including the use of real time-varying social

interactions (objectives 1, 2 & 3) to infer the role that correlations ex-

ert on the survival of cooperation. The candidate contributed providing

the topological characterization of the dataset, performing the agent-

based simulation of the evolutionary dynamic, preparing some parts of

the manuscript (especially those concerning the description of the data

used and the evolution of topological properties over time), and display-

ing the results obtained, as an oral contribution, at the one of the main

international conferences of network science named �NetSci 2013 � held

in Copenhagen, Denmark, in June 2013.

3. In Chap. 5, through the use of a coevolutionary dynamic (obtained

putting in cascade two di�erent dynamical processes), we study the phe-

nomenon of voluntary vaccination as an active method to prevent the

spread of diseases. In particular, the decision of whether getting vacci-

nated or not has been modeled as a social dilemma using the formalism

of evolutionary games (objective 1). The contributions of the candidate

have involved: the design of the model, the realization of the simula-

tions, the analysis of the results produced, and the preparation of the

manuscript. The candidate has also presented the results at international

conferences both as oral (�Complenet 2014 �, held in Bologna, Italy, in

March 2014) and poster (�NetSci 2013 �, held in Copenhagen, Denmark,

in June 2013) contributions.

4. In Chap. 6, we investigate the emergence of topological properties when

the system possesses di�erent type of interactions and each one of them

is encoded as a di�erent layer. To gauge the emergence of such features

when the layers are projected onto a single one, we make use of real data
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belonging to the European airline network (objectives 3 & 2). The can-

didate has contributed to the design of the model, the preparation of the

dataset, its topological characterization, the analysis of the results, and

the writing of the whole manuscript. Also, with the aim of fostering the

public availability of big data, the candidate prepared a public repository

where the data (cleaned and �ltered) are freely available for the whole

scienti�c community.

5. In Chap. 7, we were interested in observing the e�ects that the use of data

belonging to a real system made of several layers has on the dynamical

outcome of a re-scheduling procedure whose behavior has been previously

studied in systems with just one kind of interaction among their elements

(objectives 1, 2 & 3). The contribution of the candidate involved all the

phases of the work, from the design of the model up to the writing of the

manuscript.

6. In Chap. 8, we studied the emergence of a collective phenomenon like

synchronization. In particular, we were interested in the characterization

of the onset of a novel kind of synchronization, named remote synchro-

nization, in a population of amplitude oscillators whose interactions are

arranged like a complex network (objectives 1 & 3). The contributions of

the candidate have focused on the design of the simulations, the analysis

of the results.

After having described the aims, and the contributions of the candidate, of

the work done during the doctorate, we are ready to pass to the main body of

the manuscript. However, before doing so, it is worth spending some words to

illustrate the structure of this thesis to let the reader create some sort of mental

map of it. The structure of this thesis is the following: Chapter 2 we provide the

fundamental knowledge needed to an unexperienced reader to fully understand

all the concepts used and results found in the following chapters. In particular,

in Sec. 2.1 we introduce some basic mathematical notions of graph theory and

some structural measures. In Sec. 2.2, instead, we present some general models

of complex networks including multiplex (2.2.4) and time-varying (2.2.5) ones.

Then, in Sec. 2.3, an overview on some dynamical processes that have been

implemented on top of complex networks topologies is made. In particular:

spreading phenomena, synchronization, and evolutionary game theory are il-

lustrated in sections 2.3.1, 2.3.2, and 2.3.3 respectively as they have been the

main dynamical frameworks used in the works of this thesis. After introducing

the basic concepts used within the papers collected here, we are ready to un-

derstand the results contained into them and displayed in chapters from 3 to

8. Finally, in Chap. 9 we draw some general conclusions and give a few future

perspectives.





Chapter 2

Methods

2.1. Introduction to graph theory

Many real-world situations can be conveniently described by means of a

diagram consisting of a set of points together with lines joining certain pairs

of points. For example, the points could represent people, with lines joining

pairs of friends; or the points might be communication centres, with lines

representing communication links. Notice that in such diagrams one is mainly

interested in whether two given points are joined by a line; the manner in

which they are joined is sometimes not physical. A mathematical abstraction

of situations of this type gives rise to the concept of graph.

Graphs are so named because they can be represented graphically, and

it is this graphical representation which helps us understand many of their

properties. Each vertex is indicated by a point, and each edge by a line joining

the points representing its ends. There is no single correct way to draw a

graph; the relative positions of points representing vertices and the shapes of

lines representing edges usually have no signi�cance.

However, we often draw a diagram of a graph and refer to it as the graph

itself; in the same spirit, we call its points vertices and its lines edges. Most

of the de�nitions and concepts in graph theory are suggested by this graphical

representation. The ends of an edge are said to be incident with the nodes, and

vice versa. Two vertices which are incident with a common edge are adjacent,

as are two edges which are incident with a common vertex, and two distinct

adjacent vertices are neighbours.

However, sometimes drawing a graph is completely useless, especially when

the number of vertices and edges is very large. In fact, the big number of

connections and points could transform a brief clear sketch into a complete



8 Chapter 2. Methods

Figure 2.1: An example of a graphical representation of a graph.

mess. In addition, since positions of vertices are usually meaningless, the

�properties� of such systems cannot be deduced only by a visual analysis. This

facts seems to limit the range of validity of graph theory as it has been described

until now. Fortunately for us, mathematics provides a rigorous formalism

under which all the properties of a graph can be expressed. So, for a proper

comprehension of the results, it is necessary to introduce this common language

providing some de�nitions and notations.

2.1.1. Basic notions

Let us start with the construction of the mathematical language used to

describe graphs and in particular their structural properties. Graph theory

[4, 27�30] is the natural framework for the exact mathematical treatment of

complex networks and, formally, a complex network can be represented as

a graph. An undirected (directed) graph G = (N ,K) is a mathematical

object which consists of two sets: N and K , such that N 6= ∅ and K is

a set of unordered (ordered) pairs of elements of N . The elements of N ≡
{n1, n2, . . . , nN} are the nodes (or vertices, or points) of the graph G, while

the elements of K ≡ {l1, l2, . . . , lK} are its links (or edges, or lines). The

number of elements in N and K are denoted by N and K, respectively. Then,

later, a graph will be indicated as G(N,K) = (N ,K), or simply G(N,K) or

GN , whenever it is necessary to emphasize the number of nodes and links in

the graph.
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A powerful way to represent a graph is through the adjacency (or connec-

tivity) matrix A, a N ×N square matrix whose entry ai,j (i, j = 1, . . . , N) is

equal to:

ai,j =

{
1, if the edge between nodes i and j exists,

0, otherwise.

The simplest kind of network one can think of is that whose connections are

undirected and have the same intensity. In such case we will talk about undi-

rected and unweighted network as those networks whose adjacency matrix

is symmetric and whose nonzero elements assume all the same value.

A =




0 1 0 1

1 0 1 1

0 1 0 1

1 1 1 0




Figure 2.2: A graph and its corresponding adjacency matrix A.

The adjacency matrix A fully characterizes the topological properties of

the graph under study. In particular, as we will discover soon, its properties

determine the particular type of network under consideration. In graph theory,

two extremal cases of networks are the complete graph that is a graph in

which each pair of vertices are adjacent so it has N(N−1)
2 edges corresponding

to an adjacency matrix whose elements are all (except those on the diagonal)

equal to one; and the empty graph that is a graph with no connections (i.e.

where all the elements of A are equal to zero).

However, many real networks display a large heterogeneity in both the

intensity and direction of connections. Examples are the electrical resistance

in resistors networks, passengers �ow in airline networks, and the presence

of weak ties and hierarchies between individuals in social networks to name

a few [31�36]. These systems can be better described in terms of weighted

networks, i.e. networks in which each link carries a numerical value measuring

the strength of the connection. In this sense a new set W ≡ {w1, w2, . . . , wK}
must be considered. In the light of such assumption, a graph G is de�ned as:

GW = {N ,K,W}.



10 Chapter 2. Methods

When weighted networks are considered, it is useful to represent them

rede�ning the adjacency matrix. In these cases it is useful to consider a weight

matrix W, a N ×N square matrix whose entry wij (i, j = 1, . . . , N) is equal

to the link weight. Directed networks, instead, can be represented in terms

of asymmetric adjacency/weight matrices, thus accounting for the possibility

that not every connection may be reciprocated.

After this brief introduction about the macro categories upon which com-

plex networks may be classi�ed, and the mathematical tools used to represent

them, it is now time to de�ne those measures that will help us in the character-

ization of several topological properties. For the sake of simplicity, whenever

not indicated, we will consider unweighted undirected networks.

Node degree, strength and their distributions

The degree (or connectivity) ki of a node i is the number of edges incident

with it. It is de�ned in terms of the adjacency matrix A elements as:

ki =
∑

j ∈N
aij . (2.1)

In the case of weighted graphs, the counterpart of the degree is played by the

so-called node strength, si, which is the sum of the edges weights incident

with the node i. In terms of weight matrix W we could express it as:

si =
∑

j ∈N
wij . (2.2)

The most basic topological characterization of a graph G can be obtained

in terms of its degree distribution P (k), de�ned as the probability that a

randomly chosen node has degree k or, equivalently, as the fraction of nodes in

the graph having degree k (analogously, one can de�ne a strength distribution

P (s)). Information on how the degree is distributed among the nodes of an

undirected network can be obtained either by a plot of P (k), or by the calcu-

lation of the moments of the distribution. The n-moment of P (k) is de�ned

as:

〈kn〉 =
∑

k

kn P (k) . (2.3)

The �rst moment 〈k〉 is the average degree of G. The second moment mea-

sures the �uctuations of the connectivity distribution around the mean 〈k〉.
The degree distribution completely determines the statistical properties of un-

correlated networks as shown by Newman et al. in [4, 37].

When analyzing real networks [38], it may happen that the data have

rather strong intrinsic noise due to the �niteness of the sampling. Therefore,
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when the size of the system is small, it is sometimes advisable to measure the

cumulative degree distribution P>(k), de�ned as:

P>(k) =

∞∑

k′=k

P (k′) . (2.4)

Indeed, by using P>(k), the statistical �uctuations generally present in the

tails are smoothed while preserving all other indicators. Some examples of

various degree distribution belonging to several real networks can be seen in

Fig. 2.3.

Figure 2.3: Shapes of cumulated degree distributions belonging to various real-world

networks. Panels a,b,e, and f correspond to technological and economic networks,

while panels c,d,g, and h to social ones (from Amaral et al. [38]).

Degree correlations and rich-club phenomenon

A large number of real networks are correlated in the sense that the prob-

ability that a node of degree k is connected to another node of degree, k′,

depends on k. In these cases, it is necessary to introduce the conditional

probability P (k′|k), de�ned as the probability that a link from a node of de-

gree k points to a node of degree k′. P (k′|k) satis�es the degree detailed balance

condition kP (k′|k)P (k) = k′P (k|k′)P (k′) [39]. For uncorrelated graphs, the

balance condition gives P (k′|k)P (k) = k′P (k′)/〈k〉.
Correlated graphs are classi�ed as assortative if the average degree of

nearest neighbour knn =
∑

k′ k
′P (k′|k) is an increasing function of k, whereas
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they are referred to as disassortative when knn is a decreasing function of k

[40]. In other words, in assortative networks the nodes tend to connect to their

connectivity peers, while in disassortative networks nodes with a lower degree

are more likely connected with highly connected ones.

Another interesting quantity that is able to capture the presence of degree

correlations is the so-called rich-club phenomenon, which refers to the tendency

of nodes with high centrality, the dominant elements of the system, to form

tightly interconnected communities, and it is one of the crucial properties ac-

counting for the formation of dominant communities in both computer and

social sciences [24, 41, 42]

Essentially, nodes with a large number of links, usually referred to as rich

nodes, are much more likely to form tight and well-interconnected subgraphs

(clubs) than low-degree nodes. A �rst quantitative de�nition of the rich-club

phenomenon is given by the rich-club coe�cient φ, introduced in the context

of the Internet in [41]. Denoting by E>k the number of edges among the N>k

nodes having degree higher than a given value k, the rich-club coe�cient is

expressed as:

φ(k) =
2E>k

N>k (N>k − 1)
, (2.5)

where N>k(N>k − 1)/2 is nothing less than the maximum possible number of

edges among the N>k nodes. Therefore, φ(k) measures the fraction of edges

connecting those nodes with respect to the maximum number of edges there

might be. It is worth mentioning that, the rich-club phenomenon is not nec-

essarily associated with assortative mixing. In other words, the rich-club phe-

nomenon and the mixing properties express di�erent features that are not

trivially related to each other. Also, it is worth stressing that a simple inspec-

tion of the φ(k) trend is potentially misleading in the discrimination of the

rich-club phenomenon since an increasing behavior (for high values of k) does

not con�rm the presence of the rich-club. Nevertheless, the behaviour of the

rich-club coe�cient as a function of the degree k is a probe for the topological

correlations in a complex network, and it yields important information about

its underlying architecture.

As we have seen so far, the rich-club coe�cient φ(k) is a quantity to deal

with care. To reduce the risks that may lead to wrong conclusions, and to allow

the comparison between di�erent kind of networks, an alternative measure has

been proposed. In particular, Colizza et al. have proposed to use a normalized

coe�cient rather than simply Eq. (2.5). More in detail, φ(k) is divided by

the same quantity calculated on a network obtained using the appropriate

null model providing a suitable normalization φ′(k). Such null models have

to ensure that the obtained network has the same degree distribution of the

original one but with any eventual degree correlation washed out.
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Figure 2.4: Normalized rich-club coe�cient R as a function of degree k for various real

and synthetic networks. We see how Internet (at the autonomous system level) and

Protein interactions networks do not display rich-club e�ect, while Air transportation

and Scienti�c collaboration do. Concerning the synthetic networks models (ER, MR

and BA), only BA ones possess a rich-club (from [42]).

From the discussion above, a possible choice for the normalization of the

rich-club coe�cient is provided by the ratio R(k) = φ(k)/φ′(k), where φ′(k)

is the link abundance on a network with the same degree sequence of the

original but with connections randomly shu�ed (i.e. no degree correlations)

that can be calculated analytically. A ratio larger than one is the actual

evidence for the presence of a rich-club phenomenon leading to an increase in

the interconnectivity of high-degree nodes in a more pronounced way than in

the random case. In contrast, a ratio R(k) < 1 is a signature of an opposite

organizing principle that leads to a lack of interconnectivity among high-degree

nodes.

R(k) =
φ(k)

φ′(k)
=

2E>k
N>k(N>k − 1)

N>k(N>k − 1)

2E′>k
=
E>k
E′>k

, (2.6)

where E′>k is the number of nodes with degree greater or equal to k in such

network. An illustrative example displaying the behavior of R as a function of

k for various real and synthetic networks is displayed in Fig. 2.4.
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Shortest path lengths and diameter

Graphs are often used to model systems in which goods move through

them. Consider, for example, the case of transportation or communication

systems, but social systems may, as well, have �things� moving through them

(gossip news or viruses to cite some). For such reason, it is very important to

know which route is the best one, to ensure a fast and safe delivery, as well as

the size and the robustness of the system in which we are moving through. In

this section we focus on quantities that can provide an answer to such kind of

problems.

As previously stated, the knowledge of the shortest path between two points

in the system is a crucial issue in the context of transport and communication

within a network. Suppose, for example, that one needs to send a data packet

from one computer called i to another named j through the Internet: the

geodesic or shortest path is the shortest walk connecting two nodes (in an

unweighted network the minimum number of hops needed to reach node j

from i). Geodesics provide optimal pathway, since one would achieve a fast

transfer and save of system resources. For such a reason, shortest paths have

also played an important role in the characterization of the internal structure

of a graph [24]. It is useful to represent all the shortest path lengths of a

graph G as a matrix, D, in which the entry dij corresponds to the length of

the geodesic from node i to node j. The maximum value of dij is thus called

the diameter of the graph. In the light of the previous de�nition, in a spatial

(weighted) graph, the shortest path length is de�ned as the smallest sum of the

edge lengths throughout all the possible paths in the graph connecting, say, a

node i to another one named j [30, 35, 43]. In this way both the topology and

the geography of the system are taken into account.

A measure of the typical separation between two nodes in the graph is given

by the average shortest path length, L, (a global property) also known as

the characteristic path length, de�ned as the mean of geodesic lengths over

all couples of nodes [3, 4, 24].

L =
1

N(N − 1)

∑

i,j ∈N , i 6=j
dij . (2.7)

A problem arising from the above de�nition is that L diverges if there are

disconnected components in the graph. One possibility to avoid such a diver-

gence is to limit the summation in Eq. (2.7) only to pairs of nodes belonging

to the largest connected component, or giant component [9]. An interesting

alternative, called e�ciency, is described below.
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E�ciency

The global structural properties of a graph can be evaluated by the analysis

of the shortest paths between all pairs of nodes. However, as we have mentioned

above, there exist a divergence issue with Eq. (2.7). We already spoke about

one possibility to avoid such inconsistence. Another possible way to solve this

problem is to consider the harmonic mean of the geodesic lengths, and to de�ne

the so-called e�ciency, E, of a graph [35, 43]. In this way we are still able to

quantify how easy is the communication between the nodes.

E =
1

N(N − 1)

∑

i,j ∈N , i 6=j

1

dij
. (2.8)

Where dij is an element of the geodesic matrix D. Such quantity is an indicator
of the tra�c capacity of a network, and avoids the divergence in Eq. (2.7), since

any pairs of nodes belonging to disconnected component of the graph yields a

contribution equal to zero to the summation in Eq. (2.8) (if two nodes have

no paths connecting them then we set dij = ∞). In particular, the extreme

boundaries of e�ciency are represented by the complete graph and the empty

one having Ecomplete = 1 and Eempty = 0 respectively.

Clustering

Many real networks, even belonging to di�erent contexts, share common

topological properties like being small-world or scale-free for example (we will

comment later on some of these properties). Among the various topological

features that networks may share, one of particular relevance is that of dis-

playing characteristic patterns of interconnections among the nodes. Those

patterns can be viewed as the fundamental �building blocks� of the network

structure, and often play a crucial role in the development of special functions

associated with the system under consideration. These fundamental sub-units

of networks have attracted a lot of attention from the scienti�c community

over the years and have been studied in many di�erent contexts [44�47].

Amotif G̃ is a pattern of interconnections occurring either in a undirected

or in a directed graph G at a number of times signi�cantly higher than in

randomized version of the graph itself. As a pattern of interconnections, a

motif G̃ is usually meant as a connected (directed or not) n-node graph which

is a subgraph of G. The concept of motifs was originally studied by Alon and

coworkers [44, 48�51], who studied small n motifs in biological networks but,

of course, also other kind of networks display such features [47, 52, 53].

Among the various motifs, and cycles in particular, available those of length

three (i.e. the triangles) play a special role. In fact, such interconnection pat-
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terns have caught the attention of scientists quite before than when the role

played by other motifs have come up to light. Clustering, also known as tran-

sitivity, is a typical property of acquaintance networks, where two individuals

with a common friend are likely to know each other [24]. This can be quanti�ed

by de�ning the transitivity T of the graph as the relative number of triples, i.e.

the fraction of connected nodes which also form triangles. An alternative pos-

sibility is to use the graph's clustering coe�cient C, a measure introduced

by Watts and Strogatz [54] de�ned as follows. A quantity ci (local clustering

of node i) is introduced, expressing how likely ajm = 1 for two neighbors j and

m of node i. Its value is obtained counting the number of edges (denoted by

ei) in the subgraph Gi of node i neighbours (thus, a local property). The local

clustering coe�cient is de�ned as the ratio between ei and ki(ki − 1)/2, that

is the maximum possible number of edges in Gi, so:

ci =
2ei

ki(ki − 1)
=

∑
j,m aij ajm ami

ki(ki − 1)
. (2.9)

The clustering coe�cient of the graph C is the average of ci over all nodes in

G:

C ≡ 〈c〉 =
1

N

∑

j ∈N
ci . (2.10)

By de�nition, 0 6 ci 6 1, and 0 6 C 6 1. In some cases, it may be useful

to consider c(k), the clustering coe�cient of a connectivity class k, which is

de�ned as the average of ci over all nodes with degree k.

2.2. Network models

The topological measures exposed so far are completely general and ap-

plicable to any kind of graph. The characterization/study of real systems

mappable as complex networks, by means of such measures, constitutes one of

the main aims of network science. However, the need for theoretical models

able to reproduce the salient features of such real systems (in order to unveil

the underlying mechanisms responsible for their presence) constituted a key

aspect in the early stages of network science. For this reason, along the years,

a plethora of network models have been proposed each of them trying to focus

on this or that particular aspect, but always with the scope of providing useful

tools to the scienti�c community. The main distinction can be made between

equilibrium models in which the system is already generated with its �nal

number of nodes; and out of equilibrium (or growth) models where the system

undergoes an evolution over �time� until it reaches a dynamical equilibrium.

The systematic study of random graphs was initiated by Erd®s and Rényi in

1959 with the original purpose of studying, by means of probabilistic methods,
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the properties of graphs as a function of the increasing number of random

connections [55]. The term random graph refers to the disordered nature of

the arrangement of links between di�erent nodes. Some paradigmatic examples

of equilibrium models are those of Erd®s-Rényi, De Solla Price, and Molloy-

Reed [55�58]. In 1998, instead, Watts and Strogatz developed a model of

random network capable of reproducing at the same time the �nite clustering

C of lattices, and the small average path length L typical of random graphs.

They named graphs obtained with this model small-world, in analogy with

the small-world phenomenon [59].

Soon after, instead, Barabási and Albert, [60], developed a non equilibrium

model for growing networks able to reproduce the scale-free property (i.e. the

fact that the degree distribution is a power law of the kind P (k) ∝ k−γ , with

2 < γ < 3) observed in many real systems [61]. Since then, we have witnessed

to a continuous increase over the years of the number of models proposed to

account for all the properties displayed by the real networks including the

scale-free property. This �urry of activity is responsible for the appearance,

in the last few years, of some new interesting frameworks that have allowed

network science to make another step forward towards a better comprehension

of complex systems, paving the way to the understanding of phenomena that

were previously not completely (or partly) understood. Two typical examples

of these new approaches are: the time-varying networks [15], and themultilayer

networks [23]. In the following sections we will illustrate the fundamental

properties of some of those models that will be used in the papers displayed in

chapters from 3 to 8.

2.2.1. Erd®s Rényi random graphs

In their �rst article [62], Erd®s and Rényi proposed a model to generate

random graphs with N nodes and K links, that we will henceforth call Erd®s

and Rényi random graphs (ER) and denote as GERN,K . Starting with N

disconnected nodes, ER random graphs are generated by connecting couples

of randomly selected nodes, avoiding multiple connections, until the number

of edges equals K [62]. We emphasize that a given graph is only one outcome

of the many possible realizations, an element of the statistical ensemble of all

possible combinations of connections. For the complete description of GERN,K
one would need to describe the entire statistical ensemble of possible realiza-

tions, that is, in the matrix representation, the ensemble of adjacency matrices

[63]. An alternative model for ER random graphs consists in connecting each

couple of nodes with a probability p ∈ [0, 1]. This procedure de�nes a dif-

ferent ensemble, denoted as GERN,p and contains graphs with di�erent number

of links: graphs with K links will appear in the ensemble with a probability
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pK(1− p)N(N−1)/2−K .

The two models have a strong analogy, respectively, with the canonical

and grand canonical ensembles in statistical mechanics [64], and coincide in

the limit of large N . Notice that the limit N →∞ is taken at �xed 〈k〉, which
corresponds to �xing 2K/N in the �rst model and p(N − 1) in the second one.

Although the �rst model seems to be more pertinent to applications, analytical

calculations are easier and usually are performed in the second model.

Let us comment now about some of the structural properties of ER graphs.

In our discussion we consider ER networks obtained using the GERN,p method.

In this case, the structural properties of ER random graphs vary as a function

of p showing, in the case of the size of the giant component, a dramatic change

at a critical probability pc =
1

N
, corresponding to a critical average degree

〈k〉c = 1. The transition at pc has the typical features of a second order phase

transition. Concerning the degree distribution, P (k), the probability that a

node i has k = ki edges is given by the binomial distribution. However, for

largeN and �xed 〈k〉, the degree distribution is well approximated by a Poisson

distribution:

P (k) = e−〈k〉
〈k〉k
k!

. (2.11)

The shortest path length L, like the diameter, scales like: L ∼ lnN/ ln〈k〉.
The clustering coe�cient of GERN,p is equal to C = p = k/N . Hence, in the limit

of large system size, ER random graphs have a vanishing C and �nite (but

small) average path length L.

2.2.2. Random geometric graphs

Usually, most of the paradigmatic examples of networks one could think

of are relational networks, that is, graphs in which distances do not have

physical meaning and are just dimensionless quantities measured in terms of

edge hops. However, in many cases the physical space in which networks are

embedded and the actual distances between nodes are important, such as in rail

and road networks, ad hoc communication networks, and other geographical

and transportation networks (for a quite exhaustive bibliography on spatial

networks we suggest to look at the report of Barthélemy [16]). The random

geometric graph (RGG) is a standard spatial network model that plays a

role for spatial networks similar to the one played by the Erd®s-Rényi random

graph for relational ones [65, 66]. The construction process of a RGG with N

nodes and radius R, on a d-dimensional metric space, can be summarized as

follows:
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1. The N nodes are placed on the Euclidean space Ω ∈ Rd with uniform

distribution.

2. An edge is created for every pair of nodes whose Euclidean distance is

r < R.

Figure 2.5: A 2D random geometric graph with N = 500, 〈k〉 = 5 and no periodic

boundary conditions. (from [65]).

The degree distribution of a RGG is given by a Poissonian as well. However,

due to the spatial embedding, other topological estimators behave di�erently

from those of ER graph. Also, the use of periodic or open boundary condi-

tions a�ect severely such behavior. The relation between space and topological

quantities stems from the intersection properties of d-dimensional hyperspheres

(of radius r) centered on each node with those of the other nodes. Under such

assumptions, for example, it is possible to determine that the average degree

is equal to:

〈k〉 = Np = N 2d V = N 2d
πd/2 rd

Γ

(
d+ 2

2

) , (2.12)

whereN is the number of nodes, p plays the role of the connection probability of

GERN,p model, Γ is the gamma function, and V is the volume of the d-dimensional

hypersphere of radius r. The clustering coe�cient C, instead, is given by:

C ∼ 3

√
2

π d

(
3

4

)d+ 1

2 . (2.13)

It is worth noting that the clustering coe�cient does not depend on the size

of the system thus, in contrast with ER random graphs, it does not vanish in

the thermodynamic limit. The spatial embedding of RGG deeply a�ects the

average path length L. As one could guess, the absence (for values of R smaller
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than the size of the system) of long range links draws L to behave like in a

regular lattice. On the other hand, if we consider periodic boundary conditions

the scenario changes and we are able to recover the results observed for ER

networks. Concerning the second-order features and in particular, the degree

correlation functions some results can be found in the paper of Antonioni et

al. [67].

2.2.3. Barabási-Albert scale-free networks

As we have commented before, many real networks display degree distribu-

tions behaving like P (k) ∝ k−γ thus having any characteristic scale for the de-

gree k and for such reason named scale-free networks. The Barabási�Albert

(BA) model is a non equilibrium model of network growth inspired by the for-

mation of the World Wide Web, and is based on two basic ingredients: growth

and preferential attachment.

More precisely, an undirected graph GBAN,K is constructed as follows. Start-

ing with m0 nodes, at each time step t = 1, 2, 3, . . . , N −m0 a new node j with

m ≤ m0 links is added to the network. The preferential attachment prescribes

that the probability that a link will connect j to an existing node i is linearly

proportional to the actual degree of i:

∏

j→i
=

ki∑
l kl

. (2.14)

In the limit t→∞, the model produces a degree distribution P (k) ∼ k−γ , with
an exponent γ = 3. The case of a growing network with a constant attachment

probability
∏
j→i = 1/(m0 + t − 1) produces, instead, a degree distribution

P (k) = e/m exp(−k/m). This implies that the preferential attachment is an

essential ingredient of the model. Also, since every new node has m links, the

network at time t will have N = m0+t nodes and K = mt links, corresponding

to an average degree 〈k〉 = 2m for large times.

Analyzing the behavior of other topological measures, we can observe that,

in the BA model, the average distance L is smaller than an equivalent ER ran-

dom graph, and increases logarithmically with N . Analytical results predict a

double logarithmic correction to the logarithmic dependence L ∼ logN/ log(logN).

The clustering coe�cient vanishes with the system size as C ∼ N−0.75. This is
a slower decay than that observed for random graphs, C ∼ N−1 , but it is still
di�erent from the behavior in small-world models and real networks, where C

is a constant independent of N .

Apart from the BA model, other models able to generate power law degree

distribution have been proposed over the years. Among them, are worth to
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mention: the De Solla Price model, Molloy-Reed (MR) con�gurational model,

the atractiveness model of Dorogovtsev et al. , and the so called �tness model

of Caldarelli et al. just to cite a few [56, 57, 68, 69].

2.2.4. Multiplex networks

Recently, due also to the possibility of harvesting huge amount of data,

there have been increasingly intense e�orts to investigate networks with mul-

tiple types of connections or �multilayer � networks [70]. Such systems were

examined decades ago in disciplines like sociology and engineering, albeit the

explosive attempt to develop frameworks to study multilayer complex systems,

and to generalize a large body of familiar tools from network science, is a recent

phenomenon. Social networks are, indeed, a good example of multilevel (mul-

tilayer) networks because they intrinsically possess a rich variety of hierarchies,

various kind of nodes and interactions, may have coarse-grained structures, can

be bipartite, and so on. For such reasons, together with transportation net-

works, they can be considered a paradigmatic example of multilayer networks.

Within the e�orts made to study such systems, a considerable amount of

interest has been devoted to the characterization and modeling of multiplex

networks, with the aim of creating a consistent mathematical framework to

study, understand, and reproduce the structure of these systems [12, 23, 25, 26,

71�77]. In particular, in the last four years, two main tracks have been followed:

from one side, people have worked to formulate a fully consistent mathematical

framework to extend all the measures developed for single-layer networks to the

multilayer ones [23, 76�78]; on the other side, there has been other people more

interested in the study of well known dynamics on top of multilevel networks to

see whether the multilayer structure produces new phenomena [13, 14, 71, 79,

80]. As an example, for some types of cascading-failure processes, a multilayer

system can exhibit a ��rst-order� (i.e., discontinuous) phase transition instead

of the �second-order� (i.e., continuous) phase transitions that are typical for

single layer systems [12].

Before continuing with the mathematical formulation of multilevel net-

works, we must clarify an important aspect about terminology. With multi-

layer network one means a network made of two or more distinct layers where

a node in a layer may not be present in the others, and where there are intra-

layer connections among nodes of the same layer, and inter-layer connections

among nodes belonging to di�erent layers. For multiplex network, instead,

we mean a particular kind of multilayer where each node is represented (as

the same node) in every layer of the system, and where the inter-layer connec-

tions are only among the representatives of the same node. In this thesis we



22 Chapter 2. Methods

consider only multiplex networks. However, all the formalism that is going to

be introduced can be easily extended to the case of multilayer networks and

the interested reader could �nd a very good introduction to such formalism in

[23, 78].

Having settled the terminology issue, we are now ready to introduce the

mathematical framework used to describe multiplex networks. Three di�erent

formalisms have been proposed: the adjacency tensor [23], the supra-adjacency

matrix [14, 23], and the array of adjacency matrix [77]. The �rst formalism is

the most �elegant� but less intuitive, the second is nothing but a projection of

the former with the advantage of being more useful for practical applications,

the third is designed to work in the case where the inter-layer connections are

less important than the intra-layer ones. In the following, we will introduce

only the last two.

Considering a simple multiplex composed of just two layers (like that of

Fig. 2.6), its supra-adjacency matrixM is a block matrix made of nothing

else than the adjacency matrices of each layer Ai | i = 1, 2 in the diago-

nal blocks, and a diagonal matrix B (whose elements are all the same) else-

where. The diagonal blocks account for the intra-layer structure, while the

o�-diagonal blocks account for the inter-layer connections. Having built the

supra-adjacency matrix with such hierarchical constraints, it is trivial to re-

trieve all the topological estimators we have seen so far. The interested reader

could refer to the review of Kivelä et al. [78].

M =

( A1 I
I A2

)
(2.15)

Figure 2.6: A multilayer graph (left) and its corresponding supra-adjacency matrix

M (right). In particular, in this multilayer, all the links between layers have weight

equal to one (thus B = I).

The supra-adjacency matrix can be obtained from the tensorial representation

of the multiplex. Starting from the adjacency tensor of the multilayer, one can

reduce its rank (i.e., order) by constraining the space of possible multilayer

networks or by ��attening� the tensor [14, 81, 82].

The alternative formalism developed by Battiston et al. [77] has the advan-

tage of being very intuitive and allowing a straightforward extension of all the

topological estimators developed for simple networks. It also contemplates the

possibility of projecting the layers into a single one as if we were looking at the
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multilevel system from above. We consider �rst a system composed of N nodes

and M unweighted layers. We can associate to each layer α, α = 1, . . . ,M, an

adjacency matrix A[α] = {a[α]ij }, where a
[α]
ij = 1 if node i and node j are con-

nected through a link on layer α, so that each of theM layers is an unweighted

network. Such a multiplex system is completely speci�ed by the vector of the

adjacency matrices of the M layers

~A =
{
A[1], . . . ,A[M ]

}
. (2.16)

We de�ne the degree of a node i on a given layer α as k
[α]
i =

∑
j a

[α]
ij , from

which follows that 0 ≤ k
[α]
i ≤ N − 1 ∀i,∀α. Consequently, the degree of node

i in a multiplex network is the vector

~ki =
(
k
[1]
i , . . . , k

[M ]
i

)
, i = 1, . . . , N . (2.17)

As one could guess,
∑

i k
[α]
i = 2K [α], where K [α] is the total number of links

on layer α. Vectorial variables, such as ~A and ~ki, are necessary to properly

store all the richness of multiplex networks. However, it is also useful to de�ne

aggregated adjacency matrices (in which we disregard the fact that the links

belongs to di�erent layers) to be used as a term of comparison. We will show

that aggregated matrices and the corresponding aggregated measures, with

which one may be tempted to analyze the multi-layer structure, have limited

potential and often fail in detecting the key structural features of a multiplex

network. We de�ne the aggregated topological adjacency matrix A′ = {a′ij} of
a multiplex network, where

a′ij =

{
1 if ∃ α : aαij = 1

0 otherwise
(2.18)

This is the adjacency matrix of the unweighted network obtained from the

multi-layer structure joining all pairs of nodes i and j which are connected

by an edge in at least one layer of the multiplex network, and neglecting the

possible existence of multiple ties between a pair of nodes and the nature of

each tie as well. For the degree of node i on the aggregated topological network,

we have

k′i =
∑

j

a′ij . (2.19)

Summing k′i over all elements of the system, we obtain
∑

i

k′i = 2K ′ , (2.20)

where K ′ is the total number of links (also called the size) of the aggregated

topological network. Matrix A′ describes a single-layer binary network which
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can be studied using the well-established set of measures de�ned for single-

layer networks. This representation turns out to be very simplistic and often

insu�cient to unveil the key features of multi-layer systems but proving it is

out of the scope of this thesis. The interested reader could �nd it in the paper

of Battiston et al. [77].

2.2.5. Time varying networks

Until recently, in most network studies, the time dimension has been pro-

jected out by aggregating the contacts between vertices to (sometimes weighted)

edges, even in cases when detailed information on the temporal sequences of

contacts or interactions would have been available.

Figure 2.7: A time-varying graph represented as a series of graph G1, G2, . . ., each one

corresponding to an instant of time τ . If we project a certain number of snapshots,

corresponding to a time window ∆t = n τ , onto a single static (weighted) graph we

will obtain the graph displayed at the bottom.

On one hand, one will always lose information when projecting a temporal

network structure to a static graph (see Fig. 2.7 for an illustration). On the

other hand, in some cases, this loss of information is probably too insigni�cant

to make up for the more complicated analysis and modeling needed for the

temporal graph approach. So, we are legitimated to ask: when are temporal

networks a suitable framework for analysis and modeling? A special case of

the requirement that a system should have temporal structure for it to suit

a temporal-network framework, relates to time scales [83]. If the dynamical
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system on the network is too fast compared to the dynamics of the contacts, or

when edges are active, then there is no need to model the system as a temporal

network. One example is the Internet where the data packets travel much faster

than the topology changes. So, the reason behind the neglection of temporal

structure of complex networks until some years ago may be also due to the fact

that in recent times we are experiencing an acceleration of the time scales at

which infrastructures evolve compared to the dynamical phenomenon acting

on them. A typical example of such acceleration is given by the proximity

patterns of humans � data on who is close to whom at what time � that are

important both for understanding the spread of airborne pathogens and word-

of-mouth spreading of information. Nowadays, in fact, trips across the world

are much faster than, say, twenty years ago. Another fundamental aspect,

that exerts deep consequences on the evolution of dynamical processes is that

related with causality. The arrow of time, in fact, is one of the most important

concepts in physics and can matter a lot, and as we shall see below, the timings

of connections and their correlations do have e�ects that go beyond what can

be captured by static networks.

Temporal networks can be divided into two (rough and overlapping) classes

corresponding to the two types of representations. In the �rst representation,

(Fig. 2.8(a)) there is a set of N vertices, N , interacting with each other at

certain times, and the durations of the interactions are negligible. In this

case, the system can be represented by a contact sequence, i.e. a set of

C contacts, triples (i, j, t) where i, j ∈ N and t denotes time. Equivalently,

one can represent the system by N , a set of K edges (pairs of vertices) K,
and, for e ∈ E , a non-empty set of times of contacts Te = {t1, . . . , tn}. In

Figure 2.8: Contact sequences and interval graphs. This �gure illustrates the two

fundamental temporal network representations, namely: contact sequences (a) and

interval graphs (b). The times of the contacts are states next to the edges. (from

[15]).

the second class of temporal networks we discuss, interval graphs, where

edges are not active over a set of times but rather over a set of intervals Te =

{(t1, t′1), . . . , (tn, t′n)}, where the parentheses indicate the periods of activity.

The static graph with an edge between i and j if and only if there is a contact
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between i and j is called the (time) aggregated graph.

a(i, j, t) =

{
1 if i and j are connected at time t

0 otherwise
(2.21)

An approach, similar to that used by Battiston et al. for multiplex networks

[77], can also be formulated for time-varying networks. Also, it is straight-

forward to extend all the topological features seen so far to the time-varying

graphs. The interested reader could �nd a complete treatment of those quan-

tities in [15] (and references therein).

In most cases, the contacts between the same node pair in time-varying

systems tend to be clustered in time, i.e., they show persistence over time

[84, 85]. For instance, people tend to engage in relations for continuous intervals

of time. Hence, a given link has a higher probability to appear in graph Gt if

it was already present in graph Gt−1 (see Fig. 2.8 snapshots G2 and G3). To

quantify this e�ect, following Refs. [86, 87], one can compute C, the average

topological overlap of the neighbor set of a node i between two successive

graphs in the sequence:

Ci =
1

T − 1

T−1∑

t=1

∑
j a

t
ija

t+1
ij√

ktik
t+1
i

, (2.22)

where atij are the elements the adjacency matrix of the time-varying graph at

snapshot t, kti =
∑

j a
t
ij is the degree of node i at snapshot t, and T is the

duration of the whole observation interval. Tang et al. [87], name this metric

the temporal-correlation coe�cient of graph G but an alternative, and

more intuitive, name is temporal clustering. Notice that Ci values fall in [0, 1]

interval. In general, a higher value of Ci is obtained when the interactions of

node i persist longer in time, while Ci tends to zero if the interactions of i are

highly volatile. Also, it is worth mentioning that, following the ideas exposed

in [88] for simple graphs, it is possible to extend the concept of temporal

clustering to the case of weighted time-varying networks.

As anticipated above, the inclusion of the time dimension in the description

of the systems has dramatic consequences on them because it severely a�ects

two fundamental concepts: path and distance. Paths, in fact, must necessarily

be constrained to sequences of link activations that follow one another in time.

Thus, in a temporal graph, paths are usually de�ned as sequences of contacts

with non-decreasing times that connect sets of vertices. Kempe et al. [89]

and Holme et al. [90] call such paths time-respecting. A striking di�erence

between static and temporal networks is that the paths are not transitive. The

existence of time-respecting paths from i to j and j to k does not imply that
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there is a path from i to k. The set of vertices that can be reached by time-

respecting paths from vertex i is called the set of in�uence of i. This is

important e.g. for disease spreading, as it represents the set of vertices that

can eventually be infected if i is the source of infection. One can also de�ne the

source set of i as the set of vertices that can reach i through time-respecting

paths within the observation window. This set consists of all vertices that may

have been the source of an infection to node i. Finally, two vertices i and j of a

temporal network are de�ned to be strongly connected if there is a directed,

time-respecting path connecting i to j and vice versa, while they are weakly

connected if there are undirected time-respecting paths from i to j and j to

i, i.e. the directions of the contacts are not taken into account.

To every time-respecting path is associated a duration, measured as the

time di�erence between the last and �rst contacts on the path; note that some

authors have called it the temporal path length [91]. Analogously to the

shortest paths that de�ne the geodesic distance, one can �nd the fastest time-

respecting path(s) between two nodes; the shortest time within which i can

reach j is called their latency or temporal distance [91]. As the concepts

of temporal duration and link-wise distance have been used interchangeably

in the literature. In the following, we will reserve the word �distance� for

measuring numbers of links, and �duration� and �latency� for measuring times.

Concerning the diameter, one option is to de�ne it as the longest average

latency albeit one would then have to choose how to deal with in�nite latencies.

Concerning the identi�cation of those meso-structures that play an impor-

tant role in the system, the reachability graphs, or path graphs, or associated

in�uence digraph [92, 93]. In such a case one puts a directed edge from ver-

Figure 2.9: Reachability graphs. Panel (a) shows a contact sequence and (b) shows

the corresponding graph (from [15]).

tices A to B if there is a time-respecting path from A to B (see Fig. 2.9).

Such a graph, thus, shows which vertices can possibly a�ect which others. The

average degree k of a reachability graph is thus the average worst-case out-

break size minus one. In other words, for any contact structure that supports

a pandemic, the reachability graph will be dense (k ∼ N).
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Temporal activity and activity driven model

Temporal networks are often used to map time-varying interactions among

agents. So the information encoded in the contact sequence may be used as a

proxy to study the temporal activity of the system. Especially, for temporal

networks of human communication, it has been discovered that the timings

among adjacent events are often bursty, periodic, and deviate from the more

uniform times expected from a memoryless, random Poisson process [94�97].

In fact, if one displays the scaled inter-contact time distributions and compare

it against similar distributions for uniformly random contact times, broad tails

are typically observed.

Goh and Barabási [98] use as their starting point the coe�cient of variation,

de�ned as the ratio of the standard deviation of the inter-contact times to their

mean, στ/mτ . For a Poissonian contact sequence, στ/mτ = 1. Using this

quantity, the burstiness of a sequence is then de�ned as

B =

στ

mτ
− 1

στ

mτ
+ 1

=
στ −mτ

στ +mτ
; (2.23)

Burstiness allows us to measure this non Poissonian behavior of contact se-

quence, but the question now becomes: are we able to build a model of time-

varying network that is able to mimic the burstiness patterns displayed by real

systems?

The activity-driven model, introduced by Perra et al. in [99], is a simple

model to generate time-varying graphs starting from the empirical observation

of the activity of each node, in terms of number of contacts established per

unit time. Given a characteristic time-window ∆t, one measures the activity

potential xi of each agent i, de�ned as the total number of interactions (edges)

established by i in a time-window of length ∆t divided by the total number

of interactions established on average by all agents in the same time interval.

Then, each agent is assigned an activity χi = ηxi, which is the probability

per unit time to create a new connection or contact with any another agent

j. The coe�cient η is a rescaling factor, whose value is appropriately set in

order to ensure that the total number of active nodes per unit time in the

system is equal to η〈x〉N , where N is the total number of agents. Notice

that η e�ectively determines the average number of connections in a temporal

snapshot whose length corresponds to the resolution of the original data set.

The model works as follows. At each time t the graph Gt starts with N

disconnected nodes. Then, each node i becomes active with probability χi∆t
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and connects to m other randomly selected nodes. At the following time-step,

all the connections in Gt are deleted, and a new snapshot is sampled.

Notice that time-varying graphs constructed through the activity-driven

model preserve the average degree of nodes in each snapshot, but impose that

connections have, on average, a duration equal to ∆t, e�ectively washing out

any temporal correlation among edges. Thus, activity-driven model can be

thought as an equivalent of ER model for time-varying networks with no tem-

poral correlations. Also, activity-driven generated networks have been used to

study the behavior of dynamical models like spreading and random walk on

top of time-varying networks [100].

2.3. Dynamical processes

Up to now, we have commented on topological properties and generative

models of complex networks. The concept of time, plays a role in the growth

process of the system and the term evolution of the system refers, indeed, to

such growing. However, this is just one side of the coin. The other side is

represented by the study of dynamical processes acting on top of a complex

topology. In such context, the word evolution assumes a new meaning because

it refers to the change of the dynamical state of the system along time. The

behavior of a variety of processes, spanning from synchronization up to dif-

fusion, has been studied over the years and a lot of groundbreaking results

have been found. However, in this thesis we will focus on just three of them,

namely: spreading of infections (Sec. 2.3.1), evolution of cooperation

(Sec. 2.3.3), and synchronization (Sec. 2.3.2). In the following sections, af-

ter introducing the basic concepts and ideas of these processes, we will provide

some of main results that have been obtained combining those processes on

systems where the pattern of interactions among the elements is described by

a complex network. The aim of this section is act as a sky jump, providing

the reader with the fundamental tools to understand results obtained going

beyond simple models.

2.3.1. Spreading of infections

The study of how a disease spreads in a population is a fundamental topic

in medical research. Since the 20th century it attracted a lot of attention from

mathematicians and, nowadays the mathematical modeling of infectious dis-

eases is a key concept in epidemiology. Physicists and engineers entered the

�eld when the similarities between the spreading of a disease and a percolation

process were enlightened [101]. However, the history of disease spread mathe-
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matical modeling is much longer and is rooted in the attempts of John Graunt

to provide demographical methods to monitor the di�usion of bubonic plague

in 1662. We had to wait until 1927 to see the �rst compartmental models of

epidemic spreading thanks to the work of Kermack and McKendrick. Then,

another leap lead us to 2001 when, for the �rst time, an epidemic spread-

ing model acting on top of an heterogeneous network, by Pastor-Satorras and

Vespignani, leading to results that have revolutionized the entire �eld of math-

ematical epidemiology [102].

A fundamental building block in modeling infectious diseases is represented

by the so-called compartmental models, in which the population is divided

into groups each of them representing a possible state of the disease [6, 103]. In

the simplest case, population can be divided into two groups: susceptible (S)

healthy people that can catch the disease if in contact with infected individuals;

and infected (I) people that currently have the disease and can transmit it to

the others. Within this framework, adding additional states like the recovered

(R) one, describing people that have been infected and are now healthy again

(or died), it is possible to model a variety of di�erent diseases.

Figure 2.10: Examples of compartmental models. From top to bottom: the SIS, SIR,

and SEIR models. Each compartment accounts for a possible state in which an agent

can be, namely: Susceptible (S), Exposed (E), Infected (I), and Recovered (R). The

transitions between compartments are controlled by rates λ, µ, and µ′.

One of the simplest epidemiological models describes diseases that can get

caught only once and end up in a immunization or death of the infected is the

Susceptible, Infected, Recovered (SIR). The model is based on two parameters,

the transmission rate λ, and the recovery rate µ. At the beginning of the

spreading process, an initial seed I0 of infected individuals is inserted in the

population. Then, at each time step, a susceptible individual l if in contact

with an infected j is infected with probability λ. At the same time step, an

infected individual m becomes recovered with a probability µ. The process

continues its evolution until all the agents are recovered or until there are not
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any infected agent. The transitions explained above are summarized in the

scheme below.

S(l) + I(j)
λ−−−−→ I(l) + I(j) (2.24)

I(m)
µ−−−−→ R(m) . (2.25)

It is also possible to model diseases that do not provide immunization to

their survivors, such as the common cold. These diseases are well described in

terms of the Susceptible, Infected, Susceptible (SIS) model in which an infected

subject returns to the S state at rate µ. In the simplest case, the spreading of

the disease is considered much faster than the mean lifespan of an individual, so

birth and death rates are not taken into account. Nevertheless, it is possible to

imagine more complicated scenarios in which births and deaths are considered

or, alternatively, other classes such as exposed (latent) (E) � i.e. individuals

that are infected but are not infectious�. The two presented models (SIR

and SIS), although very similar, lead to a totally di�erent behavior. In the

SIS two steady states are allowed: one with I = 0 in which the disease is

absorbed by the system and no real outbreak takes place, or an endemic state

I > 0, in which the infected population reaches a macroscopic stationary size

and the disease propagates inde�nitely. The SIR model prescribes that, in

the �nal state, the number of infected individuals is always zero giving rise to

two possible scenarios: the disease did not produce an outbreak and the �nal

recovered population size is close to that of the initial seed, or, the disease

propagate to a �nite fraction of the population.

Even though the dynamical behavior of the two models is very di�erent, in

both cases the two parameters λ and µ (or, more correctly, their ratio σ = λ/µ)

control the appearance (or not) of an epidemic outbreak. In particular, we are

interested in predicting the critical point σc at which the epidemic transition

from the absorbing phase (i.e. no �nite outbreak) to the endemic phase (i.e.

�nite fraction of infected, or recovered) occurs. To get some initial insight

on the value of the critical point and the nature of the epidemic transition,

it is possible to consider a simple scenario named homogeneous mixing.

In this approximation, both the SIR and SIS models are considered within

the hypothesis [6], that the contacts between individuals are chosen randomly

among the entire population. Although this strong approximation does not

consider any geographical or local detail, it permits to represent the system as

a set of ordinary di�erential equations for the densities of individuals belonging

to each class. For the SIS model, the equation is:

d ρ(t)

dt
= −µρ(t) + λ (1− ρ(t)) k̄ ρ(t) , (2.26)

where k̄ is the number of contacts in the unit time (that is �xed for all individ-
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uals) and ρ(t) is the fraction of infected individuals at time t. Note that the

normalization condition s(t)+ρ(t) = 1∀tmust hold thus implying that the frac-

tion of susceptible individual at time t, s(t), must be given by s(t) = 1− ρ(t).

Equation (2.26) can be explained in the following way: susceptibles become

infected at a rate that is proportional to the infection probability λ times the

densities of infected, susceptibles, and the number of contacts per unit time;

infected, instead, decay into susceptible state at rate µ. It is worth to notice

that λ and µ are �xed and equal for all the contacts. The Eq. (2.26) can be

solved analytically and predicts the presence of a non-zero epidemic threshold

λc (assuming µ = 1) in order for the outbreak of the disease to appear. In

particular, by considering the so- called epidemic incidence (indicated as:

i∞ = limt→∞ i(t)); if λ > λc, the value of i∞ assumes a �nite nonzero value.

Otherwise, i∞ is in�nitesimally small in the very large population limit.

In order to calculate the critical threshold, λc, one has to solve the linear

stability analysis of the so-called healthy state (i.e. s?(t) = 1) of the system.

In particular, starting from Eq. (2.26) we have:

d ρ(t)

dt
= 0 ⇔ −µc ρ?(t) + λc (1− ρ?(t)) k̄ ρ?(t) = 0 ,

µc ρ
?(t) = λc (1− ρ?(t)) k̄ ρ?(t) .

The last equation has two solutions: a �trivial� one corresponding to the

healthy state ρ? = 0, and another one corresponding to an endemic state

with a small (but �nite) fraction of infected individuals ρ? = ε with ε� 1. In

the latter case, the equation above becomes:

µc ε = λc (1− ε) k̄ ε .

Since ε� 1, we have that (1− ε) ' 1 leading to:

µc = λc k̄ .

Without loss of generality, we can set µ = 1 and obtain:

λc =
1

k̄
.

Epidemics on complex networks

Pastor-Satorras and Vespignani [7, 104], analysed the e�ects of network

connections on the rate and di�usion patterns of a disease. Using a mean-�eld

analysis, they solved a modi�ed version of SIS model on heterogeneous graphs

with a generic degree distribution P (k), and a �nite average connectivity 〈k〉.
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This approach is called heterogeneous mean-�eld (HMF). The HMF ap-

proach generalizes, for the case of networks with arbitrary degree distribution,

the equations describing the dynamical process, by considering degree-block

variables grouping nodes within the same degree class k. Let us consider again

the SIS model where the quantities sk(t) and ρk(t) are the densities of suscep-

tible and infected nodes in the degree class k at time t. We can also write the

normalization condition as:

sk(t) + ρk(t) = 1 ∀t , (2.27)

and express the global values of the epidemic incidence averaging over the

various connectivity classes: i∞ = limt→∞ i(t), with i(t) =
∑

k P (k) ik(t). At

the mean-�eld level, these densities satisfy the same di�erential equation as in

Eq. (2.26), but di�erentiated by connectivity classes:

d ρk(t)

dt
= −µρk(t) + λ k (1− ρk(t)) Θk(t) , (2.28)

where Θk(t) represents the probability that any given link points to an infected

node [7, 104].

Θk(t) =
∑

k′

P
(
k′|k

)
ρk(t) =

∑
k kP (k)ρk(t)

〈k〉 , (2.29)

because we have considered a random network in which the conditional proba-

bility does not depend on the originating node. Solving the system (2.28), and

setting again µ = 1, it is possible to obtain the epidemic threshold:

λc =
〈k〉
〈k2〉 . (2.30)

This latter result has profound implications in highly heterogeneous network.

In fact, for graphs in which 〈k2〉 < ∞ (as ER graphs), the threshold has a

�nite value and a standard phase transition is observed. Instead, for graphs

with highly �uctuating degree distributions 〈k2〉 can assume high values and

in some cases like scale-free networks with 2 < γ ≤ 3 can diverge, leading to a

vanishing epidemic threshold for the N →∞ limit.

The latter result spurred a lot of research related on the analysis and con-

tention of epidemic outbreaks in networked populations. For instance, in the

recent years, a large body of works have addressed the design of e�ective

immunization strategies, the study of epidemic metapopulation models

[105], coevolutionary model based on the combination of motion of agents and

spreading dynamics [8, 106], up to the design of agent based models capable

of making �disease forecast� [107]. Nevertheless, disease spreading still have a

lot of question without an answer and more e�orts are needed in order to �nd

them.
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2.3.2. Synchronization

Most of you have probably attended to a concert or a show. Usually, if the

performer is not that bad, at the end of the show, the audience start to clap

its hands to applaud. Surprisingly, the claps of the hands that initially are

erratic will gradually get more and more organized until becoming completely

synchronous. Synchronization is the coordination of events to operate a

system in unison. The �rst results on synchronization were obtained by Huy-

gens showing that only when two systems interact among them they can get

synchronized [108]. Nevertheless, the works that shed light on the synchroniz-

ability of systems composed by many interacting agents are those of Winfree

and Strogatz being inspired by biological systems [109, 110]. In particular,

Winfree discovered that a population of non-identical oscillators can exhibit a

remarkable cooperative phenomenon. When the variance of the distribution

of natural (intrinsic) frequencies of these oscillator is large, the oscillators run

incoherently, each one near its own natural frequency. This behavior remains

when reducing the variance until a certain threshold is crossed. Below the

threshold the oscillators begin to synchronize spontaneously.

Within the framework of non-linear oscillators, one of the most studied

models is that of Kuramoto [111, 112]. This model, presented in 1975, has

allowed the study of synchronization of limit cycle phase oscillator populations

weakly coupled among them. The Kuramoto model approach to synchro-

nization was a breakthrough for the understanding of synchronization in large

populations of oscillators. An interesting introduction on the Kuramoto model

can be found in [113]. In a nutshell, given a population of N oscillators, the

angular velocity of an oscillator i, θ̇i obeys to the following law:

θ̇i = ωi +
K

N

N∑

j=1

sin (θj − θi) . (2.31)

Where, ωi is the natural frequency of oscillator i that is drawn from a dis-

tribution, g(ω), of frequencies. K, instead, is the coupling constant which

is supposed to be constant. The synchronization of the system is measured

through the order parameter r, de�ned as:

r eiψ =
1

N

N∑

j=1

eiθj . (2.32)

To visualize the dynamics of the phases, it is convenient to imagine a swarm of

points running around the unit circle in the complex plane. The complex order

parameter is a macroscopic quantity that can be interpreted as the collective

rhythm produced by the whole population. It corresponds to the centroid of
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the phases. The radius r(t) measures the phase coherence, and ψ(t) is the

average phase. The values r ' 1 and r ' 0 describe the limits in which all

oscillators are either phase locked or move incoherently, respectively. Another

interesting property of Kuramoto model is that it exist a critical value of the

coupling Kc, above which the long-term behavior of the system corresponds to

the phase locked state, and below which we observe incoherence. Such critical

value can be derived analytically (for the complete derivation, the interested

reader could look at [19]) and it is equal to:

Kc =
2

π g(0)
; (2.33)

where g(0) is the distribution of the natural frequencies ω calculated in ω = 0.

Figure 2.11: (panels a to d) Geometric interpretation of the order parameter r. The

phases θj are plotted on the unit circle as a function of the coupling K, and their

centroid is given by the complex number r eiψ. (panel e) Order parameter r as a

function of the coupling K. (panel f) Distribution of the natural frequencies g(ω).

From [114].

Kuramoto model on complex networks

So far we have commented on coupled oscillators where each element �feels�

the presence of all the other ones. Of course, we know that such assumption

is no longer valid in real systems and that the pattern of interaction among

elements is better described in terms of a complex network. Thus, a question

arise: what are the e�ects of considering an underlying topology on the onset

of synchronization? Various attempts have been made through the years and
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we have now a better comprehension of the phenomena taking place when an

ensemble of oscillator goes into the synchronized state.

Studies on synchronization in complex topologies where each node is con-

sidered to be a Kuramoto oscillator, were �rst reported for WS networks [115]

and BA graphs [116]. These works are mainly numerical explorations of the

onset of synchronization, being their main goal being the characterization of

the critical coupling beyond which groups of nodes beating coherently �rst

appear. The Kuramoto model on a generic complex network is de�ned as:

θ̇i = ωi + λ

N∑

j=1

aij sin (θj − θi) , (2.34)

where aij are the elements of the adjacency matrix, and the coupling has been

modi�ed from K/N into λ. In analogy with what we have seen in the mean-

�eld case, it is possible to obtain an equivalent of the order parameter r of

Eq. (2.32) also in the networked case.

As well as in the mean �eld case, there exists a critical value of the coupling

λc and it follows that such value is related to bothKc and the largest eigenvalue

vmax of the adjacency matrix, yielding:

λc =
Kc

vmax
= Kc

〈k〉
〈k2〉 =

2

π g(0)

〈k〉
〈k2〉 ; (2.35)

The use of mean �eld approximation in Eq. (2.35) produces, as a surprising

result, that the critical coupling λc in complex networks is nothing else but

the one corresponding to the all-to-all topology Kc re-scaled by the ratio be-

tween the �rst two moments of the degree distribution, regardless of the many

di�erences between the patterns of interconnections [117, 118]. It is worth

mentioning that Eq. (2.35) has the same functional form for the critical points

of other dynamical processes such as percolation and epidemic spreading pro-

cesses [119]. It would imply that the critical properties of many dynamical

processes on complex networks are essentially determined by the topology of

the graph.

Before concluding the discussion about the Kuramoto model on complex

networks, it is worth making few comments on the way the system reach the

synchronized state. Concerning the region where we are neither close to the

onset of synchronization nor at complete synchronization? How is the latter

state attained when di�erent topologies are considered?

Gómez-Gardeñes et al. have seen in [120] that the onset of synchronization

�rst occurs for SF networks. As the network substrate becomes more homo-

geneous, the critical point λc shifts to larger values and the system seems to
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be less synchronizable. On the other hand, they also showed that the route to

complete synchronization, r = 1, is sharper for homogeneous networks.

From a microscopic analysis, it turns out that for homogeneous topologies,

many small clusters of synchronized pairs of oscillators are spread over the

graph and merge together to form a giant synchronized cluster when the e�ec-

tive coupling is increased. On the contrary, in heterogeneous graphs, a central

core containing the hubs �rst comes up driving the evolution of synchronization

patterns by absorbing small clusters [120].

Figure 2.12: Synchronized clusters for several values of λ for two di�erent topologies

(ER and SF). The evolution of local synchronization patterns is always agglomerative,

however, it follows two di�erent routes. In the ER case, the growth of the GC proceeds

by aggregation of small clusters of synchronized nodes, while for the SF network the

central core groups the smaller clusters around it. (from [120]).

The Stuart�Landau model on complex networks

Another limit-cycle oscillator is the one described by the Stuart-Landau

model (SL) [121]. We introduce directly the SL on complex networks and

comment some of the properties of this model. Let us consider a network of N

coupled Stuart-Landau oscillators [121]. Each node i is characterized by two

variables, (xi, yi)
T , whose dynamical evolution follows:

ẋi = αxi − x3i − xiy2i − ωiyi +
λ

ki

N∑

j=1

aij (xj − xi)

ẏi = ωixi + αyi − x2i yi − y3i +
λ

ki

N∑

j=1

aij (yj − yi) ,
(2.36)

where
√
α and ωi are respectively the amplitude and the (natural) frequency of

oscillator i when de-coupled from the rest of the system. The second term on

the right accounts for the coupling of the dynamics of node i with its ki neigh-

bors. The strength of the coupling is controlled by λ (λ = 0 in the uncoupled

limit) while A = {aij} represents the adjacency matrix of the network.



38 Chapter 2. Methods

To study the synchronization properties of system (2.36), we work with

the phase variable of each oscillator, de�ned as θi = tan−1 (yi/xi). Re-writing

Eqs.(2.36) into polar coordinates (ρ, θ) we obtain:

ρ̇i = αρi − ρ3i +
λ

ki

N∑

j=1

aij
[
ρj cos(θj − θi)− ρi

]

θ̇i = ωi +
λ

ki

N∑

j=1

aij
ρj
ρi

sin(θj − θi) .
(2.37)

It is possible to demonstrate that, under certain circumstances, the Stuart-

Landau oscillator behave like a Kuramoto one. In particular, starting from

Eq. (2.37), we impose the following change of variable ρi =
√
αRi. Under

such change, Eq. (2.37) become:

√
α Ṙi = α

√
αRi −

√
α3R3

i +
λ

ki

N∑

j=1

aij
[√
αRj cos(θj − θi)−

√
αRi

]

θ̇i = ωi +
λ

ki

N∑

j=1

aij

√
αRj√
αRi

sin(θj − θi) .
(2.38)

Rescaling the time in the �rst equation of the above system setting dT = αdt,

we have:

dRi
dT

= Ri −R3
i +

λ

α ki

N∑

j=1

aij
[
Rj cos(θj − θi)−Ri

]

θ̇i = ωi +
λ

ki

N∑

j=1

aij
Rj
Ri

sin(θj − θi) .
(2.39)

If we put ourselves in the limit for α→∞, we observe how the equation above

become:

dRi
dT

= 0

θ̇i = ωi +
λ

ki

N∑

j=1

aij
Rj
Ri

sin(θj − θi) .
(2.40)

because, in this limit, R → 1. So, in conclusion, we are left with a Kuramoto

oscillator where the coupling is re-scaled by ki (as it was studied in [122]).
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2.3.3. Evolutionary game theory

If natural selection among individuals favors the survival of the �ttest, why

would one individual help another at a cost to itself? Charles Darwin himself

noted the di�culty of explaining why a worker bee would labor for the good

of the colony, because its e�orts do not lead to its own reproduction. The so-

cial insects are �one special di�culty, which �rst appeared to me insuperable,

and actually fatal to my theory,� he wrote in his book entitled On the Origin

of Species [123]. So pervasive is cooperation that Martin Nowak of Harvard

University ranks it third pillar of evolution, alongside of mutation and natural

selection. �Natural selection and mutation describe how things change at the

same level of organization�, he explains. �But natural selection and mutation

alone would not explain how you get from the world of bacteria 3 billion years

ago to what you have now� [124]. Evolution is based on a �erce competition

between individuals and should therefore reward only sel�sh behavior. Every

gene, every cell, and every organism should be designed to promote its own

evolutionary success at the expense of its competitors. Yet, we observe coop-

eration on many levels. That puzzle has inspired biologists, mathematicians,

even economists to come up with ways to explain how cooperation can arise

and thrive.

A cooperator is someone who pays a cost, c, for another individual to

receive a bene�t, b. A defector has no cost and does not deal out bene�ts.

Cost and bene�t are measured in terms of �tness. Over the years, many

mechanisms have been proposed to explain the emergence of cooperation [125].

It is worth commenting about some of them. Assuming that cooperation can

emerge only if the cost over bene�t c/b ratio is suitable, some of most important

mechanisms allowing the emergence of cooperation are: kin selection, direct

reciprocity, group selection and, network reciprocity.

The mechanism named kin selection was proposed by J. B. S. Haldane and

can be resumed by the following statement: �Would I lay down my life to save

my brother? No, but I would to save two brothers or eight cousins�, arguing

that cooperation could emerge only among members belonging to the same

genetic pool. To help explain our cooperative nature, in the 1970s, Robert

Trivers came up with the idea of direct reciprocity or, alternatively, reciprocal

altruism which work somehow like: �You scratch my back, and I will scratch

yours�. Kevin Foster, and others, have become convinced that competition

among groups (i.e. group selection) can promote cooperation. In other words,

evolutionary forces can act on several levels, with natural selection pushing to

make individuals less cooperative being countered by competition at the level

of the group, because groups with greater cooperation among members tend to

survive better. An example of that is the so-called green-beard gene e�ect,
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which consist in the fact that a gene that enables an individual to recognize

�as one could recognize a green beard� and cooperate with others who carry

that same gene, promote the formation of groups where the collective e�orts

are directed towards the preservation of such feature.

All the mechanisms commented above are based on a well-mixed popu-

lations, where everybody interacts equally likely with everybody else. This

approximation is used by all standard approaches to evolutionary game dy-

namics [5, 126, 127]. Of course, such assumption is not realistic. Spatial

structures or social networks imply that some individuals interact more often

than others. One approach of capturing this e�ect is evolutionary graph the-

ory [52], which allows us to study how spatial structure a�ects evolutionary

and ecological dynamics [128]. The individuals of a population occupy the

vertices of the graph. In this setting, cooperators can prevail by forming net-

work clusters, where they help each other. The resulting network reciprocity

is a generalization of �spatial reciprocity� [129]. Let us get more insight on

this last mechanism for the promotion of cooperation, introducing �rst some

notions on evolutionary games played one against another or in a group. After

this, we will comment about some results of evolutionary games on complex

networks, i.e. on evolutionary graph theory.

Pairwise games

We shall model interactions among individuals in terms of two-people (or

pairwise) games in which both players can either cooperate or defect when in-

teracting with each other. After each round of the game the agents accumulate

a payo� according to the strategy chosen by both players. Mutual cooperation

leads to the reward, R, whereas mutual defection leads to the punishment,

P . The other two possibilities occur when one player cooperates and the other

defects, for which we have S (sucker's payo�) and T (temptation) for the

cooperator and the defector, respectively. Provided that mutual cooperation

is always preferred over mutual defection, three dilemmas arise naturally [130],

depending on the relative ordering of these four payo�s: The Snowdrift game,

for which T > R > S > P ; the Stag-Hunt game, for which R > T > P > S;

and the Prisoner's Dilemma game, for which T > R > P > S. For all

dilemmas, mutual cooperation is also preferred over unilateral cooperation S.

Tension becomes apparent when the preferred choices of each player lead to

individual actions resulting in mutual defection, despite the fact that mutual

cooperation is more bene�cial.

Indeed, tension will arise when players prefer unilateral defection to mutual

cooperation (T > R), when players prefer mutual defection to unilateral coop-
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eration (S < P ), or when both situations arise, which is precisely what hap-

pens in the Snowdrift game, the Stag-Hunt game and the Prisoner's Dilemma

game, respectively. Formally, these dilemmas span a four-dimensional param-

eter space. Without loss of generality, normalizing mutual cooperation R to 1

and mutual defection P to 0, we are left with two parameters, T and S. The

behavior of all dilemmas, summarized in Tab. 2.1, can be explored considering

the following ranges for the parameters: 0 ≤ T ≤ 2 and −1 ≤ S ≤ 1.

Abbreviation Payo� order Optimal Strategy

Snowdrift SG T > R > S > P Players prefer unilat-

eral defection to mu-

tual cooperation

Stag Hunt SH R > T > P > S Players prefer mu-

tual defection to uni-

lateral cooperation

Prisoner's

Dilemma

PD T > R > P > S Both tensions above

are incorporated in

this dilemma

Table 2.1: Characteristics of the three social dilemmas considered in this thesis and

mappable as a 2×2 games. For each dilemma we consider its abbreviation, the payo�

order and which strategy is the optimal one. (from [131]).

Groupal interaction: the public goods game

Group interactions are indeed inseparably linked with our increasingly in-

terconnected world, and thus lie at the interface of many di�erent �elds of

research. N-player interactions are almost as fundamental as pairwise ones.

More importantly, group interactions, in general, cannot be reduced to the

corresponding sum of pairwise interactions [132, 133]. It has been recently

noted [134] that the oversimplifying restriction of pairwise social interactions

has dominated the interpretation of many biological data that would probably

be much better interpreted in terms of group interactions instead. Also, it has

been shown that increasing the group size does not necessarily lead to mean-

�eld behaviour [135], as is traditionally observed instead for games governed

by pairwise interactions [136].

Let us now introduce a game suited for group interactions named: public

goods game (PGG) [137]. Consider a group ofN individuals where a strategy,

s, being it either cooperate (s = 1) or defect (s = 0), is assigned to each one of

them. Cooperators contribute a �xed amount c (i.e. the cost) to the common

pool while defectors contribute nothing. Finally, the sum of all contributions
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in the group is multiplied by a synergy (or enhancing) factor r, and the

resulting public goods are distributed equally among all the group members.

Under such setup, the payo� of an agent i is given by:

Pi(C) = r

∑N
j sj c

N
− c ,

Pi(D) = r

∑N
j sj c

N
,

thus, in general:

Pi = r

∑N
j sj c

N
− c si = r

NC c

N
− c si = rxC c− c si , (2.41)

where NC and xC are the total number and the fraction of cooperators in the

system respectively. If the system is divided into groups of players, each player

plays a number of games equal to the number of group she is involved into. For

such reason, it results that the total payo� is equal to the sum of the payo�s

obtained in each group. As shown by Hardin, the most convenient strategy

in the PGG is defection leading to the so-called tragedy of the commons

e�ect [138].

Evolutionary games and complex networks

Pairwise games Evolutionary game theory has been extended to account

for the possibility that every agent does not interact with every other but rather

through an interaction pattern described by means of a complex network giving

rise to a discipline known as evolutionary graph theory. Both pairwise

[139, 140], and groupal games [141] games have been studied on top of complex

networks, and the general conclusion is that complex networks enhance the

emergence and survival of cooperation. We comment brie�y on such results

(pairwise �rst and groupal after), the interested reader could look at some

reviews (and references therein) [18, 142, 143].

Looking at Fig. 2.13, and taking the results for well mixed populations (i.e.

leftmost panel) as a reference, it is clear that network reciprocity enhance coop-

eration in all dilemmas. Such promotion is stronger in BA and con�gurational

scale-free networks. What are the reasons behind such enhancement?

Gómez-Gardeñes et al. [144] have found that, in order to survive invasion

from defectors, cooperators tend to coalesce and form clusters. If we observe

the strategies adopted by the agents along the time, we can basically distin-

guish two kind of behaviours: agents that never change their strategy (either

cooperating or defecting), and agents whose strategy switch one round after
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Figure 2.13: E�ects of di�erent underlying topology on the evolution of cooperation.

Each graph corresponds to a distinct topology namely (from left to right): mean-

�eld, Erd®s-Rényi, Bárabasi-Albert, and con�gurational model. Results display the

fraction of cooperators in the population plotted as a contour drawn as a function of

two parameters: sucker S, and temptation T (from [131]).

another. The �rst kind of agent is always part of a bigger group of similar

individuals forming a core, i.e. a connected component (subgraph) fully and

permanently occupied by agents with the same strategy. Therefore, in our case,

there are two types of core: cooperator core (CC), and defector core (DC). It is

easy to see that a CC cannot be in direct contact with a DC but, instead, with

a cloud of �uctuating elements that constitutes the frontier between these two

cores.

It is worth to note that a CC is stable if none of its elements has a defector

neighbor coupled to more than kc/T cooperators where kc is the number of

cooperators linked to the element and T is the temptation. Thus, the stability

of a CC is clearly enhanced by a high number of connections among pure coop-

erators, and explains why cooperative behavior is more successful in scale-free

networks than in homogeneous graphs. Moreover, it has been veri�ed that the

cooperator core in SF networks contains the hubs. Due to the structure of SF

networks, those hubs usually lay at the border of the core and thus act as a

�screen� for the rest of the cooperators within the core that remain �unaware�

of what is happening in the outer part of it. In particular, highly connected

individuals survive as pure cooperators until the fraction of cooperators van-

ishes, thus keeping around them a highly robust cooperator core that loses

more and more elements of its outer layer until cooperation is �nally defeated

by defection.
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Groupal interactions Concerning groupal interactions, Santos et al. [141]

have reformulated public goods games to be staged on complex networks. Ev-

ery player i plays ki + 1 public goods games, where ki is the degree of player

i, because she has to play in the group composed by her neighbors plus the ki
groups where she is part of her neighbors neighbourhood. Also, because the

groups will also have di�erent size, cooperators can contribute either a �xed

amount per game, ci = z, or a �xed amount per member of the group,

ci = z/(ki + 1) (see Fig. 2.14). Identically to the traditional set-up, the contri-

butions within di�erent groups are multiplied by r and accumulated. However,

the pay-o� of an otherwise identical player is not the same for the two di�erent

options. In the extension of PGG to complex networks, the payo� of a generic

Figure 2.14: When the public goods game is staged on a complex network, cooperators

can either bear a �xed cost per game (a), or a �xed amount per member (b) (from

[141]).

agent i is equal to:

Pi =
N∑

j=1

aij
r
(∑N

l=1 ajl sl cl + sj cj

)

kj + 1
+
r
(∑N

j=1 aij sj cj + si ci

)

ki + 1
−(ki + 1) si ci .

(2.42)

We obtain the following net bene�t Pi for both versions of the game. Sim-

ply, once selected the version of the game, one has to change the values of

contributions (costs) ci according the choice made. Results presented in San-

tos et al. [141] show that heterogeneous networks promote the evolution of

cooperation as shown in Fig. 2.15.
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Figure 2.15: Evolution of cooperation in networked PGGs. Filled circles refers to

scale-free graphs; open squares show results for regular graphs. (panel a) Fixed

amount per game. (panel b) Fixed amount per member (from [141]).

Yet, this is particularly true when cooperators pay a �xed amount per

member. In particular, in contrast with the mean �eld case, it has been shown

that cooperation is viable already at η ' r/(〈k〉+ 1) < 1 (normalized mul-

tiplication factor) that accounts for the average group size. Finally, we can

say that: phenomenologically, the promotion of cooperation is due to the di-

versity of investments, which is a direct consequence of the heterogeneity of

the underlying network, which gives an evolutionary advantage to cooperative

hubs, i.e. players with a high degree.
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time, allowing us to study the impact that mobility has on the emergence of cooperation in structured populations.
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Despite its ubiquity in nature and human societies, the
survival of cooperative behavior among unrelated agents (from
bacteria to humans) when defection is the most advantageous
strategy is not fully understood and constitutes one of the
most fascinating theoretical challenges of evolutionary theory
[1,2]. Recently, it has been pointed out that the integration
of the microscopic patterns of interactions among the agents
composing a large population into the evolutionary setting
provides a way out for cooperation to survive in paradigmatic
scenarios such as the prisoner’s dilemma (PD) game [3–5]. The
structural features studied span from simple regular lattices
[6–8] to real patterns displayed by social networks [9], such
as the small-world effect [10], scale-free (SF) patterns for the
number of contacts per individual [11–15], the presence of
clustering [16,17], or modularity [18].

Although the above studies mostly focus on the PD game,
other paradigmatic settings have also been studied on top of
network substrates, such as the public goods game (PGG).
The public goods game is seen as the natural extension of a
PD game when passing from pairwise to n-person games. After
the work by Santos et al. [19] showing that SF architectures
promote cooperation, many other works have continued this
line of research by exploring the networked version of the
PGG [20–26]. Moreover, as the PGG formulation introduces
two structural scales, namely, individuals and the groups within
which they interact, it has been shown that the structure of the
mesoscale defined by the groups also plays an important role
in the success of cooperation [27–30].

The assumption of a static graph that maps social ties,
although still a coarse grained picture of the microscopic
interactions, provides a useful approach for studying the
dynamics of large social systems. However, when moving
to smaller scales one has to consider additional microscopic
ingredients that may influence the collective outcome of
social dynamics. One of these ingredients is the mobility of
individuals, a topic that has recently attracted a lot of attention,
and that has been tackled from different perspectives. The
range of studies in which mobile agents have been included
spans from pure empirical studies [31–33] to theoretical
ones that focus on the role that mobility patterns play in
different dynamical processes such as disease spreading [34],
synchronization [35,36] and evolutionary dynamics [37–42]

in the context of the PD game. In addition, more complex
representations in which an entanglement between agents
mobility and evolutionary dynamics is introduced have been
studied within the framework of the PD game [43–46] and,
more recently, in the context of the PGG [47].

In this Brief Report we follow the setting introduced in
Ref. [37] in which a population of N agents moves on a two-
dimensional space. Simultaneously to the movement of the
agents we consider that a PGG is played. To this end, the
movement dynamics is frozen at equally spaced time steps,
and each node engages its closest neighbors to participate in
a group in which a PGG is played. Obviously, the mobility
of individuals turns the usual static backbone of interactions
into a time-evolving one, opening the door to novel effects on
the evolution of cooperation. Our results point out a nontrivial
dependence on the velocity of the agents and the group size in
which PGG’s are played, yielding optimum operation points
at which cooperation is favored.

We start by introducing the dynamical setting in which
the evolutionary dynamics of the PGG is implemented. Our
population is composed of a set of N agents living in the
area inside a square with side length L. Thus, the density of
individuals is defined as ρ = N/L2. Both the density and the
number of agents remain constant along our simulations. Our
agents are initially scattered at random on top of the surface by
using two independent random variables uniformly distributed
in [0,L] for assigning the initial position [xi(0),yi(0)] of each
agent.

Once the initial configuration of the system is set, two
dynamical processes co-evolve: movement and evolutionary
dynamics. At each time step t , the movement of agents affects
their current positions, [xi(t),yi(t)] with i = 1, . . . ,N , by
means of the following equations:

xi(t + 1) = xi(t) + v cos θi(t), (1)

yi(t + 1) = yi(t) + v sin θi(t). (2)

The value of each angular variable θi is randomly assigned for
each agent at each time step from a uniform distribution in the
interval [−π,π ]. In addition to the above equations, we use
periodic boundary conditions; if one agent reaches one side of
the square, it reappears on the opposite one.
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The second ingredient of the dynamical model is the
evolutionary PGG played by the mobile agents. In addition
to the random assignment of its initial position, each agent
is assigned its initial strategy randomly, so that with equal
probability an agent is set as cooperator [si(0) = 1] or
defector [si(0) = 0]. After this initial stage, both movement
and evolutionary dynamics evolve simultaneously. At each
time step, just after each agent has updated its position in
the plane as dictated by Eqs. (1) and (2), agents play a
round of the PGG as follows: First a network of contacts is
constructed as a random geometric graph (RGG) [9]. Each
pair of agents (i,j ) creates a link between them provided
they are separated less than a certain threshold distance R:√

[xi(t) − xj (t)]2 + [yi(t) − yj (t)]2 � R. After all the nodes
have established their connections with their nearest neighbors,
a RGG for the network of contacts at time t emerges, whose
topology is encoded in an adjacency matrix At

ij with entries
At

ij = 1 when nodes i and j are connected at time t and
At

ij = 0 otherwise.
Once the RGG is formed, each of the agents defines,

together with her ki nearest neighbors in the RGG, a group
of size ki + 1 in which one PGG is played. In each of the
groups she participates in, a cooperator player contributes an
amount c while a defector does not contribute. Besides, the
total contribution of a group is multiplied by an enhancing
factor r and distributed equally among all the participants.
Thus the total payoff accumulated by an agent i at time t reads

Pi(t) =
N∑

j=1

(
At

ij + δij

)
∑N

l=1

(
At

jl + δjl

)
sl(t)cr

kj (t) + 1

− [ki(t) + 1]si(t)c. (3)

After each round each of the agents can update her strategy.
To this aim, an agent i chooses one of her instant neighbors
j at random and with probability �[si(t + 1) = sj (t)], i will
take the strategy of j during the next round of the PGG. The
former probability reads:

�[si(t + 1) = sj (t)] = �[Pj (t) − Pi(t)]

M[ki(t),kj (t)]
, (4)

where �(x) = x when x > 0 while �(x) = 0 otherwise,
and M(ki,kj ) is the maximum possible payoff difference
between two players with instant degres ki(t) and kj (t). In
our simulations, we let both movement and evolutionary
dynamics co-evolve during 5 × 104 time steps. We take the
first 25 × 103 steps as a transient period while the degree of
cooperation of the system is measured during the second half
of the simulations as 〈c〉 = ∑τ+T

t=τ

∑N
i=1 si(t)/T , with both

τ = T = 25 × 103. The results reported below are averaged
over different realizations (typically 50).

We start our analysis by considering the static case in
which the velocity of the agents is set to v = 0. In this
case, the RGG is fixed from the initial configuration while
only the strategies of agents evolve. A RGG is described
by a Poissonian distribution, P (k) = 〈k〉ke−〈k〉/k!, for the
probability of finding a node connected to k neighbors. This
distribution corresponds to a homogeneous architecture in
which the dispersion around the mean degree 〈k〉 is rather
small. The same pattern for the degree distribution P (k) is
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>

ER  <k> = 6
RGG   ρ = 2.0

FIG. 1. (Color online) Average fraction of cooperators 〈c〉 with
respect to the enhancement factor r for static RGG and ER networks.
Both networks have the same number of nodes N = 1000 and average
degree 〈k〉 = 6.

obtained for the typical Erdős-Rényi (ER) random network
model. However, the main differences between RGG and ER
networks rely on the clustering coefficient, i.e., the probability
that two nodes with a common neighbor share a connection,
and their diameter. While in the case of ER graphs clustering
vanishes as N → ∞, the geometric nature of RGG boosts
the density of triads leading to a finite and large clustering
coefficient at the expense of being longer than ER graphs (since
redundant links used to increase clustering do not contribute
to create shortcuts). These differences are found to be relevant
for the synchronization of RGG compared to ER graphs [48].

The results of the above analysis are shown in Fig. 1,
where we represent the dependency of the average level of
cooperation in the system 〈c〉 with respect to the enhancement
factor r for both RGG’s and ER graphs having the same number
of elements N and the same average degrees 〈k〉. As expected,
for low values of r defection dominates the system while for
large r cooperation prevails. Between these two asymptotic
regimes the transition from defection to cooperation occurs
(5 � r � 8), pointing out slight differences between RGG’s
and ER graphs. In this region we observe that ER networks
promote cooperation slightly more than RGG’s, for which
the transition curve toward full cooperation goes slower. This
result seems to contradict previous observations in the context
of the PD game [17] in SF networks. However, this latter result
is related to the increase of heterogeneity when clustering is
enlarged in SF networks. In our case, this effect is not present
and, alternatively, clustering induces important differences
between ER graphs and RGG’s regarding the average path
length. This quantity is shown to be much larger in RGG’s
than in ER graphs, thus making more difficult the percolation
of cooperation in the whole system. On the other hand, the
onset of both transitions are roughly the same.

We now focus on the impact that the motion of agents has on
the level of cooperation with respect to the static case. Thus,
from now on, we consider that agents move with constant
velocity v following the rules given by Eqs. (1) and (2).
Moreover, we set the value of the enhancement factor r to
be in the region for which the transition from full defection to
cooperation occurs in the static case, namely, r = 5.75. Then
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FIG. 2. (Color online) Effects of velocity on the promotion of
cooperation. (a) Average level of cooperation 〈c〉 as a function of
the velocity v of agents. The system has ρ = 2.0 and R = 1.0 and
the enhancement factor r is set to r = 5.75. The velocity spans in the
interval [10−5; 10−1]. The dashed line represents 〈c〉 in a static RGG
with the same N and 〈k〉, and for the same value of r . (b) Cooperation
level 〈c〉 as a function of v and r . The static case is displayed in the
bottom strip of the panel (below the continuous thick band).

we monitor the degree of cooperation 〈c〉 in the system as
a function of the velocity The results are shown in Fig. 2(a)
together with the value (dashed line) for 〈c〉 in the static limit
with r = 5.75. We observe a rise and fall of cooperation so
that when the velocity v increases from very small values, the
average level of cooperation increases significantly, reaching
its maximum value for v � 2 × 10−2. From this point on, the
increase of v leads to the decay of cooperation so that 〈c〉 = 0
beyond v � 10−1. The fall of cooperation for large values of
the velocity of agents is a quite expected result: As the velocity
increases, one approaches the well-mixed scenario for which
cooperation is suppressed provided r is less than the typical
size of groups in which the PGG is played (here 〈k〉 = 6 so
that groups are typically composed by 7 agents). The rise of
cooperation for small values of v points out that there exists an
optimal range for the velocity that allows a tradeoff between
two important ingredients for cooperator clusters to form and
resist the invasion of defectors, namely, the ability to explore
the plane to find other cooperators and a large enough time to
interact with them so as to allow for the growth of cohesive
cooperator clusters.

A more extensive analysis on the effects of motion is
found in Fig. 2(b), where a detailed exploration of the (v,r)

parameter space is shown together with the cooperation level
in the static case (bottom part of the panel) as obtained from
the corresponding curve in Fig. 1. This panel confirms the
results obtained in Fig. 2(a) and provides a more complete
picture about the enhancement of cooperation produced by the
mobility of agents. First, by comparing the bottom (v = 0)
and top (v = 10−1) parts of the panel, we observe that a large
value of the velocity decreases the cooperation level of the
static system. In particular, let us note that the transition region
in the limit of large velocity is placed around r � 7, thus
recovering the well-mixed prediction. However, the relevant
results are found between the static and large velocity limits.
The effects of mobility in this region affect both the onset
of the transition toward cooperation and its fixation. First,
we observe that even for very low values of v the onset of
cooperation is anticipated with respect to the static case at the
expense of having a broader transition toward full cooperation
as compared to the static RGG. However, when the velocity
level is further increased, the transition becomes sharper and
both the onset and the fixation of the full-cooperative state
occur before with respect to the static case.

Finally, we focus on the influence of group size on the
evolutionary success of cooperation. Considering a fixed ve-
locity lying in the region for which the increase of cooperation
is observed, namely, v = 10−2, we compute the level of
cooperation 〈c〉 as a function of the rescaled enhancement
factor η = r/(〈k〉 + 1), where the denominator is the average
size of the groups. This rescaling is needed for the sake of
comparing the cooperation levels for systems in which the
group size is different. In this way, the well-mixed prediction
is a sharp transition from full defection to full cooperation at
η = 1. As anticipated above, the size of the groups can be
written as ρπR2 + 1, thus we can vary either the radius of
interaction R or the density of agents ρ.

In what follows we vary the radius and keep the density
constant to ρ = 2. In Fig. 3 we observe that again, a rise
and fall of cooperation is observed when going from low
radii to large ones. Obviously, as the radius (and hence group
size) increases, we approach the well-mixed case so that the
transition point reaches the theoretical value η = 1. However,
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FIG. 3. (Color online) Cooperation level 〈c〉 as a function of η =
r/(〈k〉 + 1) varying the interaction radius of the agents (i.e., the size
of the groups). In all the cases the density of players is ρ = 2.0 and
their velocity is v = 10−2.
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this approach is not monotonous, and for intermediate values
of the radius and group size the cooperation transition is
anticipated with respect to lower values of R. The reason
behind this behavior relies on the percolation of the effective
network when increasing the radius of influence of each
agent. For low values of R the effective network of contacts
contains a number of disconnected clusters; however, reaching
the percolation threshold (meaning that the 〈k〉 = ρπR2 > 2)
nearly all the agents are incorporated into a macroscopic giant
component. In our case ρ = 2 so that the percolation point lies
around R � √

π � 1.773, which agrees with the numerical
observation in Fig. 3. This connection with the percolation
point and the cooperation level has been recently observed in
Ref. [49] in the context of the PD game in regular lattices.

Summing up, the results presented in this Brief Report show
that the mobility of the agents playing a PGG enhances coop-
eration provided their velocity is moderate. This enhancement
is obtained by comparing the outcome of the evolutionary
dynamics of the PGG with the results obtained in the static
case. The addition of the random movement of agents produces

the evolution in time of the original RGG, being the rate
of creation and deletion of links controlled by the velocity
of agents. When this rate is nonzero, allowing cooperators
to explore the space, while moderate, so that cooperators
clusters can be efficiently formed, we observe an optimal
operation regime in which both the onset of cooperation and
the fixation of cooperation in the system are enhanced. Finally,
we have checked that group size shows a similar resonance
phenomenon regarding the level of cooperation. However, in
this case the point at which cooperation is enhanced is related
to the percolation point of the effective network, i.e., with the
point at which the size of the groups is large enough so as
to have a macroscopic giant component for the network of
contacts.
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[8] S. Számadó, F. Szalai, and I. Scheuring, J. Theor. Biol. 253, 221

(2008).
[9] S. Boccaletti et al., Phys. Rep. 424, 175 (2006).

[10] G. Abramson and M. Kuperman, Phys. Rev. E 63, 030901(R)
(2001).

[11] F. C. Santos and J. M. Pacheco, Phys. Rev. Lett. 95, 098104
(2005).

[12] F. C. Santos, J. M. Pacheco, and T. Lenaerts, Proc. Natl. Acad.
Sci. USA 103, 3490 (2006).
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Cooperation among unrelated individuals is frequently observed in social groups when their mem-
bers join efforts and resources to obtain a shared benefit which is unachievable by single ones.
However, understanding why cooperation arises despite the natural tendency of individuals towards
selfish behavior is still an open problem and represents one of the most fascinating challenges in
evolutionary dynamics. Very recently, the structural characterization of the networks upon which
social interactions take place has shed some light on the mechanisms by which cooperative behavior
emerges and eventually overcome the individual temptation to defect. In particular, it has been
found that the heterogeneity in the number of social ties and the presence of tightly-knit communi-
ties lead to a significant increase of cooperation as compared with the unstructured and homogeneous
connection patterns considered in classical evolutionary dynamics. Here we investigate the role of
social ties dynamics for the emergence of cooperation in a family of social dilemmas. Social interac-
tions are in fact intrinsically dynamic, fluctuating and intermittent over time, and can be represented
by time-varying networks, that is graphs where connections between nodes appear, disappear, or are
rewired over time. By considering two experimental data sets of human interactions with detailed
time information, we show that the temporal dynamics of social ties has a dramatic impact on the
evolution of cooperation: the dynamics of pairwise interactions favor selfish behavior.

Popular Abstract.- Why do animals (including hu-
mans) cooperate even when selfish actions pro-
vide larger benefits? This question has challenged
the evolutionary theory during decades. The suc-
cess of cooperation is essential to humankind and
ubiquitous, no matter the cultural and religious
traits of particular populations. Scientists have
pointed out in the past a series of possible mech-
anisms that could favor cooperation between hu-
mans, as for example the peculiar way of estab-
lishing social relations which assumes the form of
a complex network. Basically, the structural at-
tributes of these networks, such as the presence
of a few individuals that have a large number
of social ties, promote cooperation and discour-
age the imitation of free-riders. However, social
interactions are inherently dynamic and chang-
ing over time, an issue which has been usually
disregarded in the study of cooperation on net-
works. We study evolutionary models in time-
varying graphs and show that the volatility of so-
cial relations tends to decrease cooperation in re-
spect to static graphs. Our results thus point out
that the time-varying nature of social ties can-
not be neglected and that the relative speed of
graph evolution and strategy update is a crucial
ingredient governing the evolutionary dynamics
of social networks, having as much influence as

the structural organization.

I. INTRODUCTION

The organizational principles driving the evolution and
development of natural and social large-scale systems,
including populations of bacteria, ant colonies, herds of
predators and human societies, rely on the cooperation
of a large population of unrelated agents [1–3]. Even
if cooperation seems to be a ubiquitous property of so-
cial systems, its spontaneous emergence is still a puzzle
for scientists since cooperative behaviors are constantly
threatened by the natural tendency of individuals to-
wards self-preservation and the never-ceasing competi-
tion among agents for resources and success. The pref-
erence of selfishness over cooperation is also due to the
higher short-term benefits that a single (defector) agent
obtains by taking advantage of the efforts of cooperating
agents. Obviously, the imitation of such a selfish (but
rational) conduct drives the system towards a state in
which the higher benefits associated to cooperation are
no longer achievable, with dramatic consequences for the
whole population. Consequently, the relevant question to
address is why cooperative behavior is so common, and
which are the circumstances and the mechanisms that
allow it to emerge and persist.

In the last decades, the study of the elementary mech-
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2

anisms fostering the emergence of cooperation in popula-
tions subjected to evolutionary dynamics has attracted a
lot of interest in ecology, biology and social sciences [4, 5].
The problem has been tackled through the formulation
of simple games that neglect the microscopic differences
among distinct social and natural systems, thus providing
a general framework for the analysis of evolutionary dy-
namics [6–8]. Most of the classical models studied within
this framework made the simplifying assumption that
social systems are characterized by homogeneous struc-
tures, in which the interaction probability is the same for
any pair of agents and constant over time [9]. However,
this assumption has been proven false for real systems, as
the theory of complex networks has revealed that most
natural and social networks exhibit large heterogeneity
and non–trivial interconnection topologies [10–13]. It has
been also shown that the structure of a network has dra-
matic effects on the dynamical processes taking place on
it, so that complex networks analysis has become a fun-
damental tool in epidemiology, computer science, neuro-
science and social sciences [14–16].

The study of evolutionary games on complex topolo-
gies has allowed a new way out for cooperation to sur-
vive in some paradigmatic cases such as the Prisoner’s
Dilemma [17–20] or the Public Goods games [21–23]. In
particular, it has been pointed out that the complex pat-
terns of interactions among the agents found in real social
networks, such as scale-free distributions of the number of
contacts per individual or the presence of tightly-knit so-
cial groups, tend to favor the emergence and persistence
of cooperation. This line of research, which brings to-
gether the tools and methods from the statistical mechan-
ics of complex networks and the classical models of evo-
lutionary game dynamics, has effectively became a new
discipline, known as Evolutionary Graph Theory [24–28].

Recently, the availability of longitudinal spatio-
temporal information about human interactions and so-
cial relationships [29–32] has revealed that social systems
are not static objects at all: contacts among individuals
are usually volatile and fluctuate over time [33, 34], face-
to-face interactions are bursty and intermittent [35, 36],
agents motion exhibits long spatio-temporal correla-
tions [37–39]. Consequently, static networks, constructed
by aggregating in a single graph all the interactions ob-
served among a group of individuals across a given pe-
riod, can be only considered as simplified models of real
networked systems. For this reason, time-varying graphs
have been lately introduced as a more realistic frame-
work to encode time-dependent relationships [40–44]. In
particular, a time-varying graph is an ordered sequence
of graphs defined over a fixed number of nodes, where
each graph in the sequence aggregates all the edges ob-
served among the nodes within a certain temporal in-
terval. The introduction of time as a new dimension of
the graph gives rise to a richer structure. Therefore, new
metrics specifically designed to characterize the temporal
properties of graph sequences have been proposed, and
most of the classical metrics defined for static graphs have

been extended to the time-varying case [44–49]. Lately,
the study of dynamical processes taking place on time-
evolving graphs has shown that temporal correlations
and contact recurrence play a fundamental role in di-
verse settings such as random walks dynamics [50–52],
the spreading of information and diseases [53–55] and
synchronization [56].

Here we study how the level of cooperation is affected
by taking into account the more realistic picture of so-
cial system provided by time-varying graphs instead of
the classical (static) network representation of interac-
tions. We consider a family of social dilemmas, includ-
ing the Hawk-Dove, the Stag Hunt and the Prisoner’s
Dilemma games, played by agents connected through a
time-evolving topology obtained from real traces of hu-
man interactions. We analyze the effect of temporal res-
olution and correlations on the emergence of coopera-
tion in two paradigmatic data sets of human proxim-
ity, namely the MIT Reality Mining [29] and the INFO-
COM’06 [30] co-location traces. We find that the level of
cooperation achievable on time-varying graphs crucially
depends on the interplay between the speed at which
the network changes and the typical time-scale at which
agents update their strategy. In particular, cooperation
is facilitated when agents keep playing the same strategy
for longer intervals, while too frequent strategy updates
tend to favor defectors. Our results also suggest that
the presence of temporal correlations in the creation and
maintenance of interactions hinders cooperation, so that
synthetic time-varying networks in which link persistence
is broken usually exhibit a considerably higher level of co-
operation. Finally, we show that both the average size of
the giant component and the weighted temporal cluster-
ing calculated across different consecutive time-windows
are indeed good predictors of the level of cooperation at-
tainable on time-varying graphs.

II. RESULTS

A. Evolutionary Dynamics of Social Dilemmas

We focus on the emergence of cooperation in systems
whose individuals face a social dilemma between two pos-
sible strategies: Cooperation (C) and Defection (D). A
large class of social dilemmas can be formulated as in
[18] via a two-parameter game described by the payoff
matrix:

(C D

C R S
D T P

)
=

(C D

C 1 S
D T 0

)
, (1)

where R, S, T and P represent the payoffs corresponding
to the various possible encounters between two players.
Namely, when the two players choose to cooperate they
both receive a payoff R = 1 (for Reward), while if they
both decide to defect they get P = 0 (for Punishment).
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FIG. 1. Activity patterns of human interactions. The number Eactive of links in the graph at time t is reported as a
function of time (blue) for MIT Reality Mining (A) and INFOCOM’06 (B). Weekly and daily periodicities are visible. Moving
averages (red), respectively over a 1-month window and a 1-day window, reveal the non-stationarity of the sequences. The
time distributions of edge active and inactive periods (respectively triangles and circles) for MIT Reality Mining (C) and
INFOCOM’06 (D) The data were log-binned. The peak at σ ∼ 1 for the inactive periods corresponds to 24 hours.

When a cooperator faces a defector it gets the payoff S
(for Sucker) while the defector gets T (for Temptation).
In this version of the game the payoffs S and T are the
only two free parameters of the model, and their respec-
tive values induce an ordering of the four payoffs which
determines the type of social dilemma. We have in fact
three different scenarios. When T > 1 and S > 0, de-
fecting against a cooperator provides the largest payoff,
and this corresponds to the Hawk-Dove game. For T < 1
and S < 0, cooperating with a defector is the worst case,
and we have the Stag Hunt game. Finally, for T > 1
and S < 0, when a defector plays with a cooperator we
have at the same time the largest (for the defector) and
the smallest (for the cooperator) payoffs, and the game
corresponds to the Prisoner’s Dilemma. In this work we
consider the three types of games by exploring the pa-
rameter region T ∈ [0, 2] and S ∈ [−1, 1].

In real social systems, each individual has more than
one social contact at the same time. This situation
is usually represented [26] by associating each player
i, i = 1, 2, . . . , N to a node of a static network, with ad-
jacency matrix A = {aij}, whose edges indicate pairs of
individuals playing the game. In this framework, a player
i selects a strategy, plays a number of games equal to the
number of her neighbors ki =

∑
j aij and accumulates

the payoffs associated to each of these interactions. Ob-
viously, the outcome of playing with a neighbor depends
both on the strategiy selected by node i and that of the
neighbor, according to the payoff matrix in Eq. 1. When
all the individuals have played with all their neighbors
in the network, they update their strategies as a result
of an evolutionary process, i.e., according to the total
collected payoff. Namely, each individual i compares her
cumulated payoff pi with that of one of her neighbors, say
j, chosen at random. The probability Pi→j that agent i
adopts the strategy of her neighbor j increases with the
difference (pj − pi) (see Methods for details).

The games defined by the payoff matrix in Eq. 1
and using a payoff-based strategy update rule have been

thoroughly investigated in static networks with different
topologies. The main result is that, when the network is
fixed and agent strategies are allowed to evolve over time,
the level of cooperation increases with the heterogeneity
of the degree distribution of the network, being scale-free
networks the most paradigmatic promoters of coopera-
tion [17–19]. However, in most cases human contacts and
social interactions are intrinsically dynamic and varying
in time, a feature which has profound consequences on
any process taking place over a social network. We ex-
plore here the role of time on the emergence of coopera-
tion in time-varying networks.

B. Temporal patterns of social interactions

We consider two data sets describing the temporal pat-
terns of human interactions at two different time scales.
The first data set has been collected during the MIT Re-
ality Mining experiment [29], and includes information
about spatial proximity of a group of students, staff, and
faculty members at the Massachusetts Institute of Tech-
nology, over a period of six months. The resulting time-
dependent network has N = 100 nodes and consists of a
time-ordered sequence {G1, G2, . . . , GM} of M = 41291
graphs (snapshots), each graph representing proximity
interactions during a time interval of τ = 5 minutes.
Remember that each graph Gm,m = 1, . . . ,M accounts
for all the instantaneous interactions taking place in the
temporal interval [(m−1)τ,mτ ]. The second data set de-
scribes co-location patterns, over a period of four days,
between the participants of the INFOCOM’06 confer-
ence [30]. In this case, the resulting time-dependent
network has N = 78 nodes, and contains a sequence of
M = 2880 graphs obtained by detecting users co-location
every τ = 2 minutes.

The frequency of social contacts is illustrated in Fig. 1
(panels A and B), where we report the number of active
links at time t, Eactive, as a function of time. In the MIT
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FIG. 2. Cooperation diagrams for the MIT Reality Mining data set. Fraction of cooperators at the equilibrium as a
function of the temptation to defect (T) and of the sucker’s score (S) for different values of the interval ∆t between two successive
strategy updates. From left to right, the diagrams correspond to ∆t equal to 1 hour, 1 day, 1 week, 1 month, 2 months, and to
the entire observation period Mτ ' 5 months. The diagrams in the top row correspond to time-varying graphs with original
time ordering, those in the middle row are obtained for the same values of ∆t but on randomized time-varying graphs, while
the bottom row reports the results obtained on synthetic networks constructed through the activity-driven model. The results
are averaged over 50 different realizations. Red corresponds to 100% of cooperators while blue indicates 100% defectors.

Reality Mining data set, social activity exhibits daily
and weekly periodicities, respectively due to home-work
and working days-weekends cycles. In addition to these
rhythms, we notice a non-stationary behavior which is
clearly visible when we plot the activity averaged over a
1-month moving window (red line in panel A). In the IN-
FOCOM’06 data set we observe a daily periodicity and
a non-stationary trend which is due, in this case, to a
decreasing social activity in the last days of the confer-
ence as seen by aggregating activity over 24 hours (red
line in panel B). We also report in Fig. 1 (panels C and
D) the distributions P (σ) of contact duration, σ ≡ σon,
and of inter-contact time, σ ≡ σoff (i.e. the interval be-
tween two consecutive appearances of an edge). As it is
often the case for human dynamics [35], the distributions
of contact duration and inter-contact time are heteroge-
neous. For the MIT data set, an active edge can persist
up to an entire day, while inactive intervals can last over
multiple days and weeks; similar patterns are observed
in the INFOCOM’06 data set, where some edges remain
active up to one entire day and inter-contact times span
almost the whole observation interval. Edge activity ex-
hibits significant correlations over long periods of time.
In particular, the autocorrelation function of the time
series of edge activity shows a slow decay, up to lags of
10−12 hours for the MIT data set, and of 6−8 hours for
INFOCOM’06, after which the daily periodicity becomes
dominant (figure not reported).

C. Evolution of Cooperation in Time-varying
Networks

To simulate the game on a time-varying topology
{Gm}m=1,...,M , we start from a random distribution of
strategies, so that each individual initially behaves either
as a cooperator or as a defector, with equal probability.
The simulation proceeds in rounds, where each round
consists of a playing stage followed by a strategy update.
In the first stage, each agent plays with all her neighbors
on the first graph of the sequence, namely on G1, and
accumulates the payoff according to the matrix in Eq. 1.
Then the graph changes, and the agents employ the same
strategies to play with all their neighbors in the second
graph of the sequence, G2. The new payoffs are summed
to those obtained in the previous iteration. The same
procedure is then repeated n times with n such that n · τ
is equal to a chosen interval ∆t, which is the strategy up-
date interval. At this point, the playing stage terminates
and agent strategies are updated. Namely, each agent
compares the net payoff accumulated during the previ-
ous n time steps with that of one of her neighbors chosen
at random. In particular, we adopt here the so-called
Fermi Rule [57, 58] with a parameter β = 1 (see Meth-
ods). We have checked that the results are quite robust,
and we obtain qualitatively similar outcomes for a wide
range of β. After the agents have updated their strategy,
their payoff is reset to 0 and they start another round,
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FIG. 3. Cooperation diagrams for the INFOCOM data set. Fraction of cooperators at the equilibrium as a function of
the temptation to defect (T) and of the sucker’s score (S) for different values of the interval ∆t between two successive strategy
updates. From left to right, the diagrams correspond to ∆t equal to 4 minutes, 10 minutes, 30 minutes, 1 hour, 2 hours, 8
hours, 10 hours and Mτ ' 4 days. The top, middle and bottom row report, respectively, the results for the original data set,
the reshuffled time-varying graph and synthetic graphs constructed through the activity-driven model. The results are averaged
over 50 different realizations. Red corresponds to 100% of cooperators while blue indicates 100% defectors.

during the subsequent time interval of length ∆t = n · τ ,
as described above.

To evaluate the degree of cooperation obtained for a
given value of the strategy update interval ∆t and a pair
of values (T, S), we compute the average fraction of co-
operators 〈C(T, S)∆t〉:

〈C(T, S)∆t〉 =
1

Q

Q∑

i=1

N i
c

N
, (2)

where N i
c is the number of cooperators found at time

i · ∆t and Q is the total number of rounds played. In
general, we set Q large enough to guarantee that the
system reaches a stationary state.

We have simulated the system using different values of
∆t. Notice that for smaller value of ∆t the time-scale
of strategy update is comparable with that of the graph
evolution, while when ∆t is equal to the entire observa-
tion period Mτ the game is effectively played on a static
topology, namely the weighted aggregated graph corre-
sponding to the whole observation interval. We focus
here on the top panels of Fig. 2 and Fig. 3, where we
show how the average fraction of cooperators depends
on the parameters S and T and on the length ∆t of the
strategy update interval. We considered six values of ∆t
for the MIT Reality Mining data set, from ∆t = 1 hour
up to the whole observation interval, and eight values for
INFOCOM’06, ranging from minutes up to the aggregate
network.

At first glance, we notice that the rightmost diagrams
in both figures, which correspond to ∆t = Mτ , are in
perfect agreement with the results about evolutionary
games played on static topologies reported in the liter-
ature (see e.g. [18, 26]). If we look at the cooperation

diagrams obtained by increasing the value of ∆t in the
original sequences of graphs (top panels of Fig. 2 and
Fig. 3), we notice that, for any pair (T, S), a larger up-
date interval corresponds to a higher fraction of cooper-
ators. In particular, for MIT Reality Mining (Fig. 2) the
fraction of cooperators increases up until ∆t = 2 months,
after which the cooperation diagram is practically indis-
tinguishable from that obtained on the static aggregated
graph. For INFOCOM’06, instead, a strategy update
interval larger than 2 hours already produces a coopera-
tion diagram similar to that obtained in the aggregated
graph. These results indicate that defectors actually take
advantage from the volatility of edges, and that cooper-
ation can emerge only if the strategy update interval is
large enough. We will check this issue later in section
II D.

As we pointed out above, edge activation patterns
show non-trivial correlations. To highlight the effects of
temporal correlations and of periodicity in the appear-
ance of links in the real data sets, we have simulated
the games also on randomized time-varying graphs and
on synthetic networks generated through the activity-
driven model [60]. The results for randomized graphs
and activity-driven graphs are reported, respectively, in
the middle and in the bottom panels of Fig. 2 and Fig. 3.

Randomized time-varying graphs are obtained by uni-
formly reshuffling the original sequences of snapshots. In
this case the frequency of each pairwise contact is pre-
served equal to that of the original data set. However,
the temporal correlations of these contacts, namely the
persistence of an edge during consecutive time snapshots,
are completely washed out. As expected, for ∆t = Mτ
the cooperation diagrams obtained on the reshuffled se-
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FIG. 4. Cooperation level and size of the Giant Com-
ponent. Overall cooperation level Ctot(∆t) and average size
of the giant component 〈S〉 as a function of the aggregation
interval ∆t for MIT Reality Mining (top panels) and INFO-
COM’06 (bottom panels). Blue circles correspond to the orig-
inal data, black squares to the reshuffled networks and red
triangles to the activity-driven model. The shades indicate
the standard deviation of 〈S〉 across the sequence of graphs
for each value of ∆t. Notice that the typical size of the gi-
ant component at time-scale ∆t correlates quite well with the
observed cooperation level at the same time-scale.

quences (middle rightmost panels of Fig. 2 and Fig. 3) are
identical to those obtained on the corresponding original
data sets (top rightmost panels). In fact, when ∆t = Mτ
each agent plays with all the contacts she has seen in
the whole observation interval, with the corresponding
weights, before updating her strategy. Since, in this par-
ticular case the frequencies of contacts are the only ingre-
dients responsible for the emergence of cooperation, and
such frequencies are the same both in the original data
set and in the reshuffled version, the results of the original
and randomized graphs have to be identical. Conversely,
for smaller values of ∆t, the importance of the temporal
correlations of each pairwise contact becomes clear since
the cooperation diagrams for randomized and original
networks are very different in both MIT Reality Mining
and INFOCOM’06. In fact for the randomized graphs,
the cooperation levels at ∆t = 1 week and ∆t = 1 hour,
respectively, become comparable to those obtained for
∆t = Mτ . This points out that destroying the temporal
correlations of each pairwise contact enhances coopera-
tion.

Little differences are observed (compared to the case
of randomized graphs) when using activity-driven syn-
thetic networks (results shown in the bottom panels of
Fig. 2 and Fig. 3). In this case not only temporal correla-
tions are washed out, but also the microscopic structure
of each snapshot is replaced by a graph having a simi-
lar density of links. This rewiring distributes links more
heterogeneously than in the original and the randomized
sequences (see Methods for details). The cooperation
diagrams of activity-driven networks show a further in-
crease of the cooperation levels for even smaller values of
the strategy update interval, ∆t, than in the case of Ran-
dom graphs. Namely, for ∆t = 1 day in Reality Mining
(Fig. 2) and for ∆t = 30 minutes in INFOCOM (Fig. 3)
we already recover the cooperation levels of ∆t = Mτ .

The results reported in Fig. 2 and Fig. 3 suggest that
the ordering, persistence and distribution of edges over
consecutive time-window are all fundamental ingredients
for the success of cooperation. In general, a small value
of ∆t in the original data sets corresponds to playing
the game on a sparse graph, possibly comprising a num-
ber of small components, in which agents are connected
to a small neighborhood that persists rather unaltered
over consecutive time windows. The small size of the
isolated clusters and the persistence of the connections
within them allow defectors to spread their strategy ef-
ficiently. In the following, we will analyze this hypothe-
sis by characterizing the structural patterns of the orig-
inal time varying graph, its randomized version and the
activity-driven synthetic network.

D. Structural analysis of time varying networks

In order to understand the dependence of cooperation
on the strategy update interval ∆t, we plot in Fig. 4
the average fraction, 〈S〉, of the nodes found in the gi-
ant component of the graphs as a function of ∆t, for the
original data sets and for the reshuffled and synthetic se-
quences of snapshots. In general, for a given value of ∆t,
the giant component of graphs corresponding to random-
ized sequences or to the activity-driven model is larger
than that of the graphs in the original ordering. The
break down of temporal correlations between consecu-
tive time snapshots in randomized and activity-driven
networks produces an increase in the number of ties be-
tween different agents of the population even for small
values of ∆t. In addition, the more homogeneous distri-
bution of links within the snapshots of the activity-driven
network further increases the mixing of the agents and
thus enlarges the size of the giant component compared
to the randomized graphs.

In Fig. 4 we also plot the overall level of cooperation
at a given aggregation scale ∆t, Ctot(∆t), defined as:

Ctot(∆t) =
1

Ctot(Mτ)

∫ 2

0

dT

∫ 1

−1

C(T, S) dS .

Notice that Ctot(∆t) is divided by the value Ctot(Mτ)
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FIG. 5. Extremal temporal clustering γi
e as a function of

the strategy update interval ∆t on real data sets (blue dots).
Top (bottom) panel refers to Reality Mining (INFOCOM).
Black squares correspond to randomly reshuffled sequences
and red triangles to activity-driven synthetic networks. In
both datasets we notice that, for small values of ∆t, real data
display an higher value of clustering (persistence) than syn-
thetic cases followed by a transition value of ∆t above which
we observe a rapid increase in the clustering of synthetic cases
such that the previous situation is inverted.

corresponding to the whole observation interval, so that
Ctot ∈ [0, 1]. The value of ∆t at which 〈S〉 is comparable
with the number of nodes N , i.e. when 〈S〉 ' 1, coincides
with the value of ∆t at which the cooperation diagram
becomes indistinguishable from that obtained for the ag-
gregate network, Ctot(∆t) ' 1, for both the original and
the reshuffled sequences of snapshots. This result con-
firms that the size of the giant connected component, of
the graph corresponding to a given aggregation interval,
plays a central role in determining the level of cooper-
ation sustainable by the system, in agreement with the
experiments discussed in [59] for the case of static com-
plex networks.

It is also interesting to investigate the role of edge cor-
relations on the observed cooperation level. To this aim,
we analyze the temporal clustering (see Methods), which
captures the average tendency of edges to persist over
time. In Fig. 5 we plot the evolution of the temporal
clustering as a function of the strategy update interval
∆t. The results reveal clearly that, for small values ∆t,
the persistence of ties in the two original data sets is
larger than in the randomized and the activity-driven
graphs. In this regime the average giant component is
small in both the real and randomized cases, thus point-
ing out that the temporally connected components are
composed of small clusters. However, the larger tempo-
ral clustering observed for small ∆t in the original data
implies that the node composition of these small compo-
nents changes very slowly compared to the faster mixing
observed in the random data sets. These are then the
two ingredients depressing the cooperation levels in the
original data as compared to the random cases: the size
of the giant component and how much such components
change even at fixed size. As further confirmation, we no-
tice that link persistence grows in a similar way as ∆t in-
creases in randomized and activity-driven networks. This
growth points out that the randomization of snapshots
in one null model and the redistribution of links in the
other one make the ties more stable as ∆t increases. In-
stead, the results found on the original data sets suggest
(in particular for the case of INFOCOM) that ties are
rather volatile, being active for a number of consecutive
snapshots and then inactive for a large time interval. In
randomized and activity-driven graphs the stabilization
of ties together with the fast increase in the size of the
giant component make the resulting time-varying graph
much more similar to static networks, thus improving
the survival of cooperation, as compared to the volatile
and strongly fragmented scenario of the real time-varying
graphs.

III. CONCLUSIONS

Although the impact of network topology on the onset
and persistence of cooperation has been extensively stud-
ied in the last years, the recent availability of data sets
with time-resolved information about social interactions
allows a deeper investigation of the impact on evolution-
ary dynamics of time-evolving social structures. Here we
have addressed two crucial questions: does the interplay
between graph evolution and strategy update affect the
classical results about the enhancement of cooperation
driven by network reciprocity? And what is the role of
the time-correlations of temporal networks in the evolu-
tion of cooperation? The results of the simulations con-
firm that, for all the four social dilemmas studied in this
work, cooperation is seriously hindered when (i) agent
strategy is updated too frequently with respect to the
typical time-scale of agent interaction and (ii) real-world
timecorrelations are present. This phenomenon is a con-
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sequence of the relatively small size of the giant compo-
nent of the graphs obtained at small aggregation inter-
vals. However, when the temporal sequence of social con-
tacts is replaced by time-varying networks preserving the
original activity attributes of links or nodes but break-
ing the original temporal correlations, the structural pat-
terns of the network at a given time-scale of strategy up-
date changes dramatically from those observed in real
data. As a consequence, the effects of temporal resolu-
tion over cooperation are smoothed and, by breaking the
real temporal correlations of social contacts, cooperation
can emerge and persist also for moderately small strat-
egy update frequencies. This result highlights that both
the interplay of strategy update and graph evolution and
the presence of temporal correlations, such as edge per-
sistence and recurrence, seem to have fundamental effects
on the emergence of cooperation.

Our findings suggest that the frequency at which the
connectivity of a given system are sampled has to be care-
fully chosen, according with the typical time-scale of the
social interaction dynamics. For instance, as stock bro-
kers might decide to change strategy after just a couple of
interactions, other processes like trust formation in busi-
ness or collaboration networks are likely to be better de-
scribed as the result of multiple subsequent interactions.
These conclusions are also supported by the results of a
recent paper of Ribeiro et al. [52] in which the effects
of temporal aggregation interval ∆t in the behavior of
random walks are studied. Also, the fundamental role
played by the real-data time correlations in dynamical
processes on the graph calls for more models of temporal
networks and for a better understanding of their nature.

In a nutshell, the arguments indicating network reci-
procity as the social promoter of cooperator have to be re-
visited when considering time-varying graphs. In partic-
ular, one should always bear in mind that both the over-
and the under-sampling of time-evolving social graph and
the use of the finest/coarsest temporal resolution could
substantially bias the results of a game-theoretic model
played on the corresponding network. These results pave
the way to a more detailed investigation of social dilem-
mas in systems where not only structural but also tempo-
ral correlations are incorporated in the interaction maps.

IV. METHODS

A. MIT Reality Mining data set

The data set describes proximity interactions collected
through the use of Bluetooth-enabled phones [29]. The
phones were distributed to a group of 100 users, com-
posed by 75 MIT Media Laboratory students and 25 fac-
ulty members. Each device had a unique tag and was
able to detect the presence and identity of other devices
within a range of 5-10 meters. The interactions, intended
as proximity of devices, were recorded over a period of
about six months. In addition to the interaction data, the

original dataset included also information regarding call
logs, other Bluetooth devices within detection range, the
cell tower to which the phones was connected and infor-
mation about phone usage and status. Here, we consider
only the contact network data, ignoring any other con-
textual metadata. The resulting time-varying network is
an ordered sequence of 41291 graphs, each having N=100
nodes. Each graph corresponds to a proximity scan taken
every 5 minutes. An edge between two nodes indicates
that the two corresponding devices were within detec-
tion range of each other during that interval. We refer to
such links as active. During the entire recorded period,
2114 different edges have been detected as active, at least
once. This corresponds to the aggregate graph having a
large average node degree 〈k〉 ' 42. However, this is an
artefact of the aggregation; the single snapshots tend to
be very sparse, usually containing between 100 and 200
active edges.

B. INFOCOM’06 data set

The data set consists of proximity measurements col-
lected during the IEEE INFOCOM’06 conference held in
a hotel in Barcelona in 2006 [30]. A sample of 78 par-
ticipants from a range of different companies and insti-
tutions were chosen and equipped with a portable Blue-
tooth device, Intel iMote, able to detect similar devices
nearby. Area “inquiries” were performed by the devices
every 2 minutes, with a random delay or anticipation of
20 seconds. The delay/anticipation mechanism was im-
plemented in order to avoid synchronous measurements,
because, while actively sweeping the area, devices could
not be detected by other devices. A total number of 2730
distinct edges were recorded as active at least once in the
observation interval, while the number of edges active at
a given time is significantly lower, varying between 0 and
200, depending on the time of the day.

C. Strategy update rule

The Fermi Rule consists in the following updating
strategy. A player i chooses one of her neighbors j at
random and copies the strategy of j with a probability:

Pi→j =
1

1 + e−β(pj−pi) , (3)

where (pj − pi) is the difference between the payoffs of
the two players, and β is a parameter controlling the
smoothness of the transition from Pi→j = 0 for small
values of (pj−pi), to Pi→j = 1 for large values of (pj−pi).
Notice that for β � 1 we obtain Pi→j ' 0.5 regardless
of the value of (pj − pi), which effectively corresponds
to a random strategy update. On the other hand, when
β � 1 then Pi→j ' Θ(pj − pi), being Θ(x) the Heaviside
step function. In this limit, the strategy update is driven
only by the ordering of the payoff values.
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D. Activity-driven model

The activity-driven model, introduced in Ref. [60], is
a simple model to generate time-varying graphs start-
ing from the empirical observation of the activity of each
node, in terms of number of contacts established per unit
time. Given a characteristic time-window ∆t, one mea-
sures the activity potential xi of each agent i, defined as
the total number of interactions (edges) established by i
in a time-window of length ∆t divided by the total num-
ber of interactions established on average by all agents in
the same time interval. Then, each agent is assigned an
activity ai = ηxi, which is the probability per unit time
to create a new connection or contact with any another
agent j. The coefficient η is a rescaling factor, whose
value is appropriately set in order to ensure that the to-
tal number of active nodes per unit time in the system is
equal to η〈x〉N , where N is the total number of agents.
Notice that η effectively determines the average number
of connections in a temporal snapshot whose length cor-
responds to the resolution of the original data set.

The model works as follows. At each time t the graph
Gt starts with N disconnected nodes. Then, each node
i becomes active with probability ai∆t and connects to
m other randomly selected nodes. At the following time-
step, all the connections in Gt are deleted, and a new
snapshot is sampled.

Notice that time-varying graphs constructed through
the activity-driven model preserve the average degree of
nodes in each snapshot, but impose that connections
have, on average, a duration equal to ∆t, effectively
washing out any temporal correlation among edges.

E. Temporal clustering

Several metrics have been lately proposed to measure
the tendency of the edges of a time-varying graph to
persist over time. One of the most widely used is the
unweighted temporal clustering, introduced in Ref. [44],
which for a node i of a time-varying graph is defined as:

γi =
1

T − 1

T−1∑

t=1

∑
j a

t
ija

t+1
ij√

ktik
t+1
i

, (4)

where atij are the elements the adjacency matrix of the

time-varying graph at snapshot t, kti is the total number
of edges incident on node i at snapshot t and T is the
duration of the whole observation interval. Notice that
γi takes values in [0, 1]. In general, a higher value of γi

is obtained when the interactions of node i persist longer
in time, while γi tends to zero if the interactions of i are
highly volatile.

If each snapshot of the time-varying graph is a
weighted network, where the weight ωtij represents the
strength if the interaction between node i and node j at
time t, we can define a weighted version of the temporal
clustering coefficient as follows:

γiw =
1

T − 1

T−1∑

t=1

∑
j ω

t
ijω

t+1
ij

stis
t+1
i

. (5)

Finally, if we focus more on the persistence of inter-
action strength across subsequent network snapshots, we
can define the extremal temporal clustering as:

γie =
1

T − 1

T−1∑

t=1

∑
jmin(ωtij , ω

t+1
ij )

√
stis

t+1
i

, (6)

where by considering the minimum between ωtij and ωt+1
ij

one can distinguish between persistent interactions hav-
ing constant strength over time and those interactions
having more volatile strength. As in our case social in-
teractions are seen to be highly volatile in real data sets,
the extremal version of the temporal clustering seems to
be the best choice to unveil the persistence of social ties
at short time scales.
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In this work we analyze the evolution of voluntary vaccination in networked populations by entangling
the spreading dynamics of an influenza-like disease with an evolutionary framework taking place at the end
of each influenza season so that individuals take or do not take the vaccine upon their previous experience.
Our framework thus puts in competition two well-known dynamical properties of scale-free networks: the fast
propagation of diseases and the promotion of cooperative behaviors. Our results show that when vaccine is
perfect, scale-free networks enhance the vaccination behavior with respect to random graphs with homogeneous
connectivity patterns. However, when imperfection appears we find a crossover effect so that the number of
infected (vaccinated) individuals increases (decreases) with respect to homogeneous networks, thus showing the
competition between the aforementioned properties of scale-free graphs.
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I. INTRODUCTION

The advent of network science [1,2] has provided an
important set of computational and statistical physics tools
for describing the problem of epidemic spreading by incor-
porating the realistic interaction patterns of the constituents
of social and technological systems [3]. Classical approaches
to epidemiology [4,5] rely on the use of the theory of phase
transitions and critical phenomena, so as to unveil the onset and
the macroscopic impact of epidemic outbreaks. Recently these
techniques have been pervasively adapted to study a variety of
critical phenomena on top of networks [6].

The main contribution of the former line of research to
epidemiology has been the development of a generalized
mean-field framework in which general patterns of interactions
can be included. In particular, it was shown [7–12] that
for scale-free networks [in which the probability distribution
of having a node with k neighbors follows a power law,
P (k) ∼ k−α] the epidemic onset was anticipated as compared
to substrates with more regular (or homogeneous) connectivity
patterns. Moreover, when α < 3 (as most of social and
technological networks show [13,14]) and for large enough
(thermodynamic limit) systems, the epidemic onset vanishes,
meaning that even a very small fraction of infected elements
with small infective power can spread a disease to a macro-
scopic part of the population by a sequence of contagions
between neighbors of the network, as happens in human
contacts [15–18].

Apart from the theoretical value of the above finding, its
direct implications on public health campaigns and the security
of technological networks such as the Internet demand a deeper
understanding about the influence that diverse contact patterns
have on disease dynamics, its co-evolution [19,20], and the
design of new algorithms for immunization and vaccination
policies. Typically, these studies aim at identifying the most
efficient way for reducing the impact of an epidemic by the
vaccination or immunization of the minimal number of nodes.
To this aim, different methods to identify the most important
nodes to be immunized have been proposed [21–24].

The former works concern the immunization of tech-
nological networks since in social contexts vaccination is
typically voluntary. Thus, the study of the immunization of
a population demands that we include the ways vaccination
and risky behaviors compete and spread across individuals.
To this aim, one may consider game theory to formulate a
social dilemma in terms of the benefits associated to each
of the behaviors: vaccination or not. Within this framework
individuals act rationally, i.e., by choosing their strategy after
an evaluation of their potential benefits. This evaluation is
done by considering their perception of the risk to con-
tract the disease. For well-mixed populations recent results
show [25–30] that voluntary vaccination is not efficient to
reach efficient immunization. However, this kind of approach
was generalized to networks [31], unveiling an enhancement
of voluntary vaccination.

The former game theoretical approach considers that agents
aim at maximizing their own benefits. However, the decisions
of individuals can evolve in time depending on the epidemic
incidence observed in the population. In this framework agents
are prone to adopt the strategies that are expected to perform
better based on the information available. This evolutionary
avenue has been recently adopted to the vaccination dilemma.
A first evolutionary avenue is presented in Refs. [32–34]
where both disease transmission and vaccinating behavior
evolve in time simultaneously. The evolution for the fraction
of vaccinated individuals is driven by the difference of payoffs
between vaccinated and nonvaccinated agents (as in the
case of the well-known replicator equation of evolutionary
games [35,36]), with the latter determined by the epidemic
incidence at that time. A second evolutionary approach is
proposed in Ref. [37]. In this case, inspired by seasonal
influenza, the number of vaccinated individuals remains
constant during the duration of the influenza season. After
each season, individuals evaluate the payoffs based on the
incidence of the disease in the last season and decide whether
to vaccinate or not for the next seasons.

Here we take a similar avenue to that of Ref. [37] regarding
the dynamical setup and the motivation: the vaccination for
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seasonal influenza. However, the way in which payoffs are
constructed and the way individuals choose their strategy
follow the typical setup of evolutionary games [35,36].
This setup, originally presented in Ref. [38] for the vac-
cination dilemma, considers that individuals are assigned
a payoff that is solely based on the personal experience
during the last season. In addition, the strategic choice
is based on the imitation of those individuals with better
payoffs. Thus, we do not consider that individuals follow
a rational derivation of the payoffs associated to vaccina-
tion and risky behavior based on the information available.
This allow us to connect the vaccination dilemma with
other studies on the evolutionary game dynamics of social
dilemmas [35,36].

In recent years, the study of the evolutionary
game dynamics of social dilemmas on structured popu-
lations [39–41] has shown that cooperation (here related
to vaccination) is favored when the interactions among
individuals take the form of scale-free networks [42,43].
Inspired by this result, in this work we explore the spread of
vaccination behavior across networks with homogeneous and
heterogeneous (scale-free) connectivity patterns. Our results
show that when vaccine is perfect, scale-free networks enhance
the vaccination behavior with respect to homogeneous graphs,
thus reducing the impact of the disease on the population. How-
ever, when vaccine is imperfect, we find a crossover effect, and
homogeneous networks outperform scale-free ones. This latter
scenario reveals an interesting competition between the rapid
spread of both diseases and cooperative behaviors in scale-free
graphs.

II. THE MODEL

As introduced above, to incorporate the competition be-
tween disease spreading and evolutionary dynamics on top
of a network we entangle these two dynamical frameworks
by producing an iterative sequence of a two-stage process.
In both stages the interaction pattern among individuals is
described by a complex network (keeping the same network for
both dynamical setups). This network is given by an (N × N )
adjacency matrix Aij so that when two individuals interact
Aij = 1, whereas Aij = 0 otherwise. In this way, the number
ki of neighbors (contacts) of a given node, say, i, is given by
ki = ∑N

j=1 Aij .
In this work we will consider two of the most paradigmatic

network models: Erdős-Rényi (ER) graphs [44] and Barabási-
Albert (BA) networks [45]. The former class of graphs are
described by a Poisson degree distribution P (k), so that most
of the nodes have a connectivity close to the mean value
〈k〉. On the other hand, BA networks display a power-law
degree distribution of the form,P (k) ∼ k−3, thus incorporating
the scale-free (SF) property of real-world networks. The
implementation of our dynamical setup aims at revealing
the differences between the heterogeneous degree pattern
displayed in SF and the rather homogeneous structure of ER
graphs. To this aim, for both ER and SF networks, the average
connectivity of the nodes is set to 〈k〉 = 6. Below we introduce
the rules governing the two-stage dynamics, also sketched in
Fig. 1.

FIG. 1. (Color online) Resuming sequence of the evolutionary
picture of our model. The top box describes the epidemic spreading
process. The bottom one displays the payoffs accumulated by the
agents according to their strategy. Arrows denote the causal order of
the evolutionary process.

A. Disease spreading

The first of the stages of our dynamical setup is based on the
evolution of a susceptible-exposed-infected-recovered (SEIR)
model [4,5]. This model captures the dynamics of influenza-
type infections. Susceptible nodes have not been infected and
are healthy. They catch the disease via direct contact with
exposed neighbors at a rate λ. Exposed nodes are supposed
to carry the virus although they still do not display symptoms
of the disease; thus these individuals are highly infectious
during this incubation period. Exposed nodes become infected
with some rate μ′ which typically is the inverse time of the
incubation period of the disease. Infected nodes, on the other
hand, although still carrying the virus are here assumed not to
be infectious. In particular, we consider that during this period
they remain isolated from the rest of the population. Finally,
infected nodes pass to the recovered state with rate μ that is
the inverse duration time of the convalescence period.

With the above rules we consider that each node i interacts
simultaneously with its ki neighbors per unit time. Thus, for
a network described by the adjacency matrix Aij the effective
probability that a susceptible node i gets the disease per unit
time is given by

P i
S→E = 1 − (1 − λ)

∑N
j=1 Aij xj , (1)

where xj = 1 when node j is exposed and xj = 0 otherwise.
Here, in order to mimic the transmission of ordinary influenza,
we have set μ′ = 0.33, since the time elapsed between
exposure to the virus and development of symptoms is two
to three days. In addition we take μ = 0.2 since the symptoms
of uncomplicated influenza illness resolve after a period of 3
to 7 days, so that the average permanence in the infected state
is μ−1 = 5 days.

The addition of vaccinated individuals to the formulation
of our SEIR model implies that initially there is subset of
susceptible individuals (representing a fraction NV of the
total population) that are less prone to catch the disease than
nonvaccinated susceptible ones. In particular, we consider that
a vaccinated individual is infected during a single contact with
an exposed one at a rate λ γ , where γ ∈ [0,1] is a parameter
that modulates the quality of the vaccine, being perfect when
γ = 0 and useless for γ = 1. In this way, the probability that
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a vaccinated individual i is infected per unit time reads

P i
S→E = 1 − (1 − γ λ)

∑N
j=1 Aij xj . (2)

Once the values of the epidemic parameters μ and μ′, the
quality γ of the vaccine, and the fraction NV of vaccinated
individuals are set, we leave λ as the relevant control parameter
of the SEIR model. In addition, the relevant order parameter of
the dynamics is the fraction R of nodes that got infected once
the epidemic process dies out, so that the macroscopic behavior
is captured by the curve R(λ). For a given value of λ one starts
from an initial state in which a small fraction (here 5%) of
the population is set as exposed. Then the SEIR dynamics
is iterated until no individuals remain either as exposed or
infected.

B. Evolutionary dynamics

Once the SEIR dynamics dies out we consider that the
seasonal influenza period has passed. Before the next SEIR
dynamics starts, individuals evaluate whether to vaccinate or
not for the next season. At this point evolutionary dynamics
takes place by assigning to each of the individuals a payoff πi

(i = 1, . . . ,N) that depends on their experience accumulated
during the last SEIR propagation. As shown in Fig. 1, there
are four possibilities:

(1) Vaccinated individuals that remain healthy during the
last season have payoff π = −c (where c is a cost associated
to the vaccine).

(2) Vaccinated individuals that were infected during the last
season have payoff π = −c − TI (where TI is the time units
that the individual remain in the infected state).

(3) Individuals that did not vaccinated and remain healthy
during the season have payoff π = 0.

(4) Nonvaccinated individuals that were infected are as-
signed a payoff π = −TI .

The cost c associated to the vaccination is related to
different issues such as the time spent to get vaccinated (via
Public Health Services) or the probability that the vaccine
causes side effects. To illustrate the vaccination dilemma let
us show a very simple situation of a susceptible agent i in
contact with an exposed agent. In this situation the expected
payoff of i when having taken the vaccine is π

exp
V = −(1 −

γ λ)c − γ λ(c + 1/μ) (here we assume that TI � 1/μ). On the
other hand, if agent i has adopted a risky behavior, its expected
payoff turns into π

exp
NV = −λ/μ. Thus, in this single pairwise

encounter, the rational choice is not to take the vaccine for any
costs c > λ(1 − γ )/μ. This simple situation clearly reveals the
Vaccination Dilemma. However, in a networked population the
situation is rather more complex, and, more importantly, here
we assume that individuals are not fully rational and, instead
of deciding their behavior on expectations, they evolve their
strategies based on their previous experience.

Evolutionary dynamics provides the framework to imple-
ment the dynamical evolution of strategies. In particular, as is
usually done in evolutionary social dilemmas on networks,
each individual, say, i, chooses at random one of its first
neighbors, say, j , and compares their payoffs πi and πj

respectively. Then the probability that agent i takes the strategy
of j , sj , for the next season increases with their payoff
difference, (πj − πi). One of the most used frameworks to

calculate this probability is that of the Fermi-like rule [46,47],
in which the probability that the strategy of the neighbor j is
adopted by i reads

Psj →si
= 1

1 + exp[−β(πj − πi)]
, (3)

where β is a parameter that allows us to span between random
(β 	 1) and strong selection (β 
 1). Here we adopted β = 1
and checked that our results are quite robust under changes of
β. The update of strategies takes place simultaneously for all
the agents. Once the new strategies are taken, the payoffs are
set to zero, and the SEIR dynamics starts again with a new
fraction NV of vaccinated susceptible individuals.

Finally, let us note that we iterate the sequence of the two-
stage process (SEIR dynamics and evolutionary dynamics)
for a number of steps (generations) large enough to reach a
steady state for the relevant observables: the average fraction of
recovered, 〈R〉, and vaccinated individuals, 〈NV 〉. In addition,
at the beginning of each generation we randomly assign the in-
dividuals that are vaccinated (so that they constitute 25% of the
population) and those that are initially set as exposed (reaching
5% of the total population). It is worth mentioning that in
real cases a small fraction of the population gain permanent
immunity from exposure to the virus in the last generation. In
our case we do not consider such inherited immunity to the new
strain.

III. RESULTS

We start our discussion by briefly reporting the behavior
of the SEIR model without vaccinated individuals. In the top
panel of Fig. 2 we show the average fraction 〈R〉 of recovered
individuals at the end of the SEIR dynamics as a function of
the rate of infection per contact, λ, for ER and SF networks of
N = 1000. From this figure it becomes clear that SF networks
accelerates the onset λc of the epidemic regime as compared
to ER graphs.

Let us now focus on the case of SF networks to evaluate
the impact that voluntary vaccination (under an evolutionary
framework) has on the immunization of the system. In
the bottom panel of Fig. 2 we show the evolution of the

FIG. 2. (Color online) The top panel shows the epidemic diagram
〈R〉(λ) for ER and SF networks when vaccination is not allowed.
The bottom panel shows the evolution of the fraction of recovered
individuals, R, with the generations of the evolutionary dynamics.
The network is SF, and the rate of infection per contact is λ = 0.35,
whereas vaccination is perfect γ = 0 and it has a cost c = 0.1.
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FIG. 3. (Color online) The contour plots show the average fraction of recovered 〈R〉 (top) and vaccinated 〈NV 〉 (bottom) individuals as a
function of the infection rate λ and the vaccine quality γ for SF networks. From left to right the panels correspond to different vaccination
costs: c = 0.1 [panels (a) and (d)], c = 0.5 [panels (b) and (e)], and c = 1.0 [panels (c) and (f)]. As the cost increases we note that the overall
fraction of vaccinated individuals decreases while that of recovered nodes increases. Interestingly when c = 0.1 there is a range of low γ values
(γ < 0.1) for which the epidemic threshold disappears and the disease cannot spread for any value of λ.

fraction of recovered individuals R for a sequence of 2000
generations. The rate of infection used in this simulation
is set to λ = 0.35, which, as the top panel shows, corre-
sponds to a situation in which almost all the population
has been infected 〈R〉 � 1 when no vaccination is allowed.
Instead, when individuals can decide whether to take the
vaccination (under the aforementioned evolutionary rules)
we show that the epidemic phase does not appear (R � 0)
since the population has evolutionarily adopted the vaccination
strategy.

Remarkably, the transient regime (lasting around 500
generations) shows an interesting pattern of rise and falls for
the number of recovered individuals R. This behavior points
out that, before vaccination prevails, the population displays an
oscillating behavior between vaccination and risky behavior.
Obviously, when many people vaccinate (falls in R) the
epidemic falls, but vaccinated individuals are tempted not to
take the vaccine due to the higher benefits of risky individuals.
This leads to a progressive increase of the infections (denoted
by the increase of R) that reverse the balance of benefits
between risky and vaccinated individuals. This rise-and-fall
behavior together with the significant duration of this transient
regime reveal the importance of risk perception in voluntary
vaccination.

A. Macroscopic behavior of vaccine taking in SF networks

Now we analyze the behavior after the transient regime. To
this aim we compute the average fraction of vaccinated 〈NV 〉
and recovered 〈R〉 individual in the steady state as a function
of λ and the quality γ of the vaccine. For each couple of values

(λ, γ ) we have run 100 simulations (each of them comprising
2000 generations). In Fig. 3 we report these functions for
several vaccine costs c in SF networks. In particular, the panels
in the top show the diagrams 〈R〉(λ,γ ) and those in the bottom
show 〈NV 〉(λ,γ ). From left to right the panels correspond to
the following vaccine costs: c = 0.1, 0.5, and 1.0.

Let us focus on those diagrams corresponding to c = 0.1
[panels (a) and (d)]. The function R(λ,γ ) shows that for values
of γ ∈ [0,0.1] (roughly perfect vaccination) the epidemic
threshold disappears since 〈R〉 � 0 for all the values of λ.
In its turn, we note from panel (d) that for this latter region
the fraction of vaccinated individuals is roughly 〈NV 〉 � 1
except for very low values of λ for which the disease cannot
spread even when no immunization is present. If we increase
further the value of γ we recover the epidemic onset λc whose
values decrease as the vaccine get worse, i.e., as γ increases.
In addition, the vaccination behavior decreases so that for a
given value of γ the advantage provided by vaccines is not
useful anymore for λ > λc. Obviously, for γ = 1 we recover
the usual diagram R(λ), shown in the top panel of Fig. 1, for
SF networks since the vaccine provides no advantage, and,
as shown in panel (d), almost no individual in the network
holds the vaccination strategy giving 〈NV 〉 � 0 for all λ

values.
As we increase the cost of the vaccine to c = 0.5 [panels

(b) and (e)] and c = 1.0 [panels (c) and (f)] we observe that the
overall fraction of recovered (vaccinated) individuals increases
(decreases). Remarkably, the maximum value of γ for which
there is no epidemic threshold decreases with c, and for c = 1.0
we cannot appreciate this effect. It is interesting to note that the
usual epidemic diagram of SF networks without immunization
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is recovered for lower values of γ . For instance, in panel (b) we
note that for γ > 0.6 the curve R(λ) does not change, whereas
from panel (e) we note that, within this region, individuals do
not vaccinate anymore (〈NV 〉 = 0).

B. SF versus ER networks: The importance of vaccine quality

Having reported the macroscopic behavior in SF networks
as concerns the influence of the vaccine quality and its cost,
we now focus on the dependence on the networked substrate in
which both the disease and the vaccination strategies spread.
To this aim, we compare the behavior in SF and ER networks
in order to measure the role of degree heterogeneity on the
vaccination behavior. Importantly, we have considered SF
networks as obtained from the Barabási-Albert model [45]
after a complete randomization preserving the degree sequence
of the nodes. In this way, we obtain SF networks with
P (k) ∼ k−3 without any kind of degree-degree correlations
that could influence the dynamical behavior. In addition, we
have increased the size of the networks considered (in order
to fully exploit the heterogeneous property of SF networks) to
N = 104 nodes.

We first explore the case of perfect vaccination, γ = 0.
In Fig. 4 we show the diagrams 〈R〉(λ) (top) and 〈NV 〉(λ)
(bottom) for two different vaccination costs: c = 0.5 [panels
(a) and (c)] and c = 1.0 [panels (b) and (d)]. In these panels
we also show the standard deviations around the average
values reported. From the panels we observe that SF networks
outperform ER graphs since the overall average number of
recovered (vaccinated) individuals is smaller (higher) in SF
networks. In particular, the epidemic diagrams 〈R〉(λ) display a
clear peak around the respective epidemic thresholds, λc, of the
original (without vaccination) graphs. Up to this point λ < λc,
the epidemic does not spread, and thus vaccination behavior
is not observed either as shown in the diagrams 〈NV 〉(λ). The
peak thus points out that the risk is so small that vaccination
behavior does not show up, leading to a burst of infections,
which reaches higher values in ER graphs. This result seems
counterintuitive, since from the literature on epidemics on
networks, SF graphs are always more prone to the spread
of diseases than ER ones. Furthermore, from the diagrams
〈NV 〉(λ) we note that the vaccination onset starts earlier for SF
graphs, as their natural epidemic threshold is smaller than that
of ER ones.

For values of λ above the natural epidemic threshold, the
number of recovered nodes decreases dramatically in both
networks. Here the risk of infection becomes larger, and
individuals start to adopt the vaccination strategy as diagrams
〈NV 〉(λ) in panels (c) and (d) show. However, vaccination
behavior spreads more easily in SF networks than in ER
graphs, and it is quite remarkable that, for this regime, the
number of recovered nodes in ER graphs is always (for any
value of λ) higher than in SF networks. Thus cooperative
behavior, by taking the vaccine, spreads better in SF networks,
in agreement with those studies about cooperation and social
dilemmas in complex networks [42,43].

In Fig. 5 we explore the scenario of imperfect vaccination
considering γ = 0.12. This regime shows the competition be-
tween two well-known effects: the aforementioned prevalence
of cooperative behaviors in SF networks (with respect to ER

FIG. 4. (Color online) Epidemic 〈R〉(λ) (top panels) and vacci-
nation 〈NV 〉(λ) (bottom panels) diagrams for ER and SF networks
(N = 104, 〈k〉 = 6) when the vaccine is perfect (γ = 0). The cost
associated to the vaccine are c = 0.5 (left panels) and c = 1.0 (right
panels).

graphs) and their weakness to the spread of diseases (again
with respect to ER graphs). This competition appears as a
crossover between the behavior of both 〈R〉(λ) and 〈NV 〉(λ)
in SF and ER networks. In panels (a) and (b) we show that
the curves 〈R〉(λ) (after the peak close to the natural epidemic
thresholds of both networks) cross at some λ∗ values, which
decreases with the cost of the vaccine c. Panels (c) and (d) show
also a crossover behavior for 〈NV 〉(λ), which appears with
some delay with respect to that occurring at λ∗ for 〈R〉(λ). Note
that this crossover is well defined since the standard deviations
around the average values 〈R〉 and 〈NV 〉 are extremely low.

The behavior for λ < λ∗ shows the same trend as for the
perfect vaccination case. SF networks outperform ER graphs
showing a larger number of vaccinated individuals and a
smaller number of infections. However, for the imperfect
vaccine (γ > 0) the growth of λ affects both nonvaccinated and
vaccinated individuals. Under such conditions, the virus finds
in the SF networks a better backbone to propagate. In this way,
panels (a) and (b) show that the failure of vaccination starts
to become evident in SF networks at λ∗. The smaller benefits
provided by the imperfection of the vaccine cause the number
of vaccinated individuals to start to decrease after λ∗. Being
larger the number of infections due to the imperfect vaccine
in SF networks, as shown for λ > λ∗, the fall of vaccinated
individuals occurs in SF networks at smaller values of λ than
in ER graphs, giving rise to the crossover for 〈NV 〉 shown in
panels (c) and (d).

It is quite remarkable that for large λ values and for c = 1.0
[panels (b) and (d)] the number of vaccinated individuals
vanishes and the values of 〈R〉 goes close to one in a
similar way as in the original network (without vaccination).
Obviously, as the vaccine cost c increases, the solution 〈R〉 � 1
spans across a larger interval of λ values so that for large
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FIG. 5. (Color online) Epidemic 〈R〉(λ) (top panels) and vacci-
nation 〈NV 〉(λ) (bottom panels) diagrams for ER and SF networks
(N = 104, 〈k〉 = 6) when the vaccine is not perfect (γ = 0.12). The
cost associated to the vaccine are c = 0.5 (left panels) and c = 1.0
(right panels). The imperfection of the vaccine causes two crossovers,
one for 〈R〉 and the other one for 〈NV 〉, between the performance of
SF networks and ER graphs.

enough c there is no vaccinated individual in the population
and one finally recovers the typical 〈R〉(λ) diagram of Fig. 2(a).

IV. CONCLUSIONS

In this work we have analyzed the evolution of voluntary
vaccination in networked populations. At variance with classi-
cal approaches we have considered an evolutionary framework
so that individuals facing the vaccination dilemma do not
take the most rational strategy by considering the benefits
associated to each choice. On the contrary, they are considered
as replicating agents that imitate the strategies based on
their previous experience. To this aim we have entangled
the spreading dynamics of an influenza-like disease with

an evolutionary framework taking place at the end of each
season. Our results show that when vaccine is perfect (so
that vaccinated individuals do not get infected) scale-free
networks enhance both the vaccination behavior and the
effective immunization of the population as compared with
random graphs with homogeneous connectivity patterns.

By considering vaccine imperfection we obtain two re-
markable results. First, we have shown that, for scale-free
networks and low vaccine costs, there is a threshold value for
the vaccine imperfection so that, for values lower than this
threshold, vaccination behavior spans across the population,
and it is possible to suppress the disease for all the infection
probabilities. Instead, when vaccine imperfection becomes
large, agents are less prone to take it, and the disease takes
advantage of this risky behavior to spread more efficiently
across the population.

The other interesting result concerns the comparison be-
tween scale-free and homogeneous networks. We have shown
that when imperfection appears the better performance of
scale-free network is broken and there is a crossover effect so
that the number of infected (vaccinated) individuals increases
(decreases) with respect to homogeneous networks when λ is
large enough. This crossover results from the competition of
two well-known dynamical properties of scale-free networks:
the fast propagation of diseases and the promotion of coop-
erative behaviors. Thus, the ability of scale-free networks in
promoting cooperative behaviors (here represented as paying
the cost of taking vaccine) is threatened when payoffs are
dependent on a related dynamical process (here the spreading
of a disease) whose evolution is also affected (here enhanced)
by the heterogeneity of the network.
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Many biological and man-made networked systems are characterized by the simultaneous presence of
different sub-networks organized in separate layers, with links and nodes of qualitatively different types.
While during the past few years theoretical studies have examined a variety of structural features of complex
networks, the outstanding question is whether such features are characterizing all single layers, or rather
emerge as a result of coarse-graining, i.e. when going from the multilayered to the aggregate network
representation. Here we address this issue with the help of real data. We analyze the structural properties of
an intrinsically multilayered real network, the European Air Transportation Multiplex Network in which
each commercial airline defines a network layer. We examine how several structural measures evolve as
layers are progressively merged together. In particular, we discuss how the topology of each layer affects the
emergence of structural properties in the aggregate network.

I
n the past fifteen years, network theory1–3 has successfully characterized the interaction among the constituents
of a variety of complex systems4,5, ranging from biological6 to technological7, and social8 systems. However, up
until recently, attention was almost exclusively given to networks in which all components were treated on

equivalent footing, while neglecting all the extra information about the temporal- or context-related properties of
the interactions under study. Only in the last three years, taking advantage of the enhanced resolution in real data
sets, network scientists have directed their attention to the multiplex character of real-world systems, and
explicitly considered the time-varying9–14 and multi-layered15–26 nature of networks.

A paradigmatic example of intrinsically multiplex system is represented by the Air Transportation Network
(ATN). The ATNs have undergone a very significant growth during the last decades, giving rise to the dense and
redundant system we know nowadays27. In the ATN, nodes represent airports, while links stand for direct flights
between two airports. On the other hand, each commercial airline corresponds to a different layer, containing all
the connections operated by the same company. While a considerable effort has recently been devoted to the
characterization of the structural properties28–30 of ATNs and their role in the dynamical processes taking place on
them31–34, their multiplex nature has remained almost unexplored.

When studying systems that can be represented as a graph made of diverse relationships (layers) between its
constituents, an important question, typical of complex systems analysis, arises: can the topological properties of
the whole system be traced to those of its layers or do they emerge from the simultaneous presence of multiple
layers? Emergence is said to happen when the focus is switched from one scale to a coarser level of description.
This question can be addressed by comparing the most usual structural properties of the multiple layers com-
posing a network35 and their analogue in the aggregate representation of the network, in which the layer structure
is disregarded.

To address the above question we resort to the European ATN data set. Taking advantage of the high-
resolution of these data, comprising a number of airlines (layers) operating in Europe during the year 2011,
we succeed to extract the multiplex character of the system, and we investigate how the structural properties
usually observed in the ATN are here emerging as a result of progressive layer merging. To this end, we quantify
various topological measures, such as the degree distribution, the clustering coefficient or the presence of rich-
club effect, in networks obtained by merging together a growing number of layers, from the lowest level of
resolution of a single layer, up to the fully aggregate network. In addition, we compare two different types of
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layers, those corresponding to major (national) airlines and those
labeled as low-cost companies. We analyze their structural differ-
ences, and their different contribution to the properties of the global
ATN.

Results
The European ATN can be represented as a graph composed of M 5

37 different layers each representing a different European airline (see
Methods for details). Each layer m has the same number of nodes, N,
as all European airports are represented in each layer. Furthermore,
the data set allows extracting two main subsets, comprising all major,
and low-cost airlines, with 18 and 10 layers respectively (See Fig. 1).
In particular, panels (a) and (b) display the structure of the aggregate
network focusing first on its redundancy by sketching those links
belonging to more than one layer and on its unicity by reporting
those links that only exist in a specific layer. Panels (c) and (d) show,
instead, the single-layer ATN corresponding to a given major and
low-cost airlines, respectively. In each of the panels we highlighted
the nodes with the highest number of connections.

Topological measures. To characterize the structural properties of
both the aggregate ATN and its layers, we consider several features
widely used in network literature35, i.e. cumulative degree distri-
bution P.(k), clustering coefficient C, size of the giant component
S, average path length L and Rich-club coefficient R. We briefly
describe below the specific meaning of each of these measures in
our context. The interested reader will find a complete description
of all those quantities in the Methods section.

. The cumulative degree distribution P.(k), gives the probability of
finding a node with a number of connections (or degree) equal or
greater than k. The degree distribution is a powerful tool which
allows understanding both structural and dynamical character-
istics of a system as, for instance, its tolerance to attacks or fail-
ures36,37 so it represents a cornerstone in the characterization of
critical infrastructures, such as the ATN.

. The average path length ÆLæ, measures the average number of
hops one has to make to go from a node to another. In the context
of ATNs, it indicates the average number of flights a passenger has
to take to go from his/her origin to his/her destination. However,
if the system is not connected, this quantity diverges and it is
preferable to restrict attention to the giant (largest) component
of the system (see below).

. The clustering coefficient C, measures the probability, C [ [0, 1],
that two nodes with a common neighbor are connected together.
C is a typical measure in systems made of social acquaintances8,
but in our case it is useful to estimate the density of triangular

motifs (denoting the possibility of performing round trips of
length 3).

. The size of the giant component38 S, denotes the largest fraction of
overall nodes such that any pair of them is connected through a
path of finite length. In our case, it estimates the largest coverage
that a given airline (or a combination of them) provides in terms
of the available destinations that a passenger can reach from an
origin inside the giant component.

. The Rich-club coefficient39 R, measures the tendency of highly
connected nodes, i.e. the hubs, to be connected among them-
selves. To measure it, one has to compute the abundance of links,
w(k), among nodes with a number of connections equal or greater
than a certain value k, and the maximum possible number of links
among those nodes, w(k)max. Then, the ratio between these two
quantities gives the relative abundance of links among nodes with
at least k connections. Finally, R(k) is given by the ratio between
the abundance of links in the real case w(k)/w(k)max and the same
quantity calculated in a proper randomized version of the original
network. Colizza et al.28 measured R for the ATN, and found that
world air transportation network displays indeed a Rich-club
effect, i.e. for large values of k the value of R(k) is larger than 1.

Emergence of topological properties of the European ATN. We
now analyze the evolution of the former measures as more and more
layers are merged (independently of whether they do correspond to
major or low-cost companies), until the complete aggregate ATN,
comprising all the available layers, is reached (see the Methods
section for the details on the layer merging procedure). The results
are shown in Fig. 2.

In panel (a) we show the evolution for the cumulative degree
distribution of the aggregate ATN and those networks obtained by
merging 1, 5 and 20 randomly chosen layers. Since right-skewed
distributions often display high noise levels at the end of their tails
due to the lack of statistics, it is convenient to consider the cumulative
distribution instead of the distribution P(k) itself35. A power-law
behavior P.(k) / k2a is observed in all the situations considered,
with a decrease in the exponent a, ranging from a 5 1.84 in the single
layer case (m 5 1) to a 5 1.39 for the aggregate ATN. The increase in
heterogeneity with the number of layers considered points to a
richer-gets-richer phenomenon different from the one seen in clas-
sical models for growing scale-free networks: while in the latter case,
it results from the addition of new nodes, in the present case it
emerges from the addition new layers.

In panel (b) we report the clustering coefficient. In this case, we
show the behavior of ÆCæ as a function of the number of layers used to
construct the aggregate ATN, averaged over the number of different
combinations of m elements (m 5 1, …, M). Interestingly, we see
how the clustering suddenly increases as we merge just a few layers:

Figure 1 | Visual representation of the ATN. From left to right: the aggregate network of all the layers in which only links belonging to more

than one layer are displayed. The same network but in which we display those links which belongs to only one layer and connecting at least one node with

degree greater than or equal to 75. An example of ATN network of a major airline and, finally, the network of a low-fare (low-cost) airline. In each

network, the airports with the highest degree are highlighted.
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to achieve more than 80% of the final clustering value, we only need
to randomly merge together five layers. This result indicates that the
large density of triangles present in the ATN is a consequence of the
merging of different layers rather than a single-layer property. Thus,
in order to make round trips of length 3 one should make use, most of
the times, of more than one airline.

The former result contrasts with the picture obtained for the
evolution of the size of the giant component ÆSæ. Panel (c) describes
a monotonous and progressive increase of the coverage as more
layers are aggregated. In fact, around 40% of the European cities
are covered when merging together five randomly chosen layers. It
is worth noticing that ÆSæ also tells us that we are considering a system
which is already above the percolation threshold, so that every step
towards the aggregate network produces an increment in the collec-
tion of reachable destinations (see the value of ÆSæ for m 5 1).
However, the behavior of the transition for the average path length
ÆLæ (restricted to those nodes in the giant component) in panel (d)
shows a rise-and-fall behavior indicating that combining few layers
results in the merging of unconnected components at the aggregate
level, causing a fast increase in its length. On the other hand, after the
maximum for L is reached, the addition of new layers has a twofold
effect on the giant components: it incorporates new nodes, but also
creates alternative links between already present nodes. Thus, the
average path length of the giant component balances the addition
of new destinations with the creation of new links, and suffers a slow
decrease when increasing m.

Finally, panel (e) shows, only for the aggregate network, the exist-
ence of a Rich-club effect quantifying the abundance of links between
nodes with degree larger or equal to k, w(k), normalized with respect
to its maximum. This quantity is computed both for the real ATN
and for a set of randomized versions of the network in which all the
links are rewired keeping the same degree sequence of the original
network. This randomization aims at destroying any kind of correla-
tion between the local properties of connected nodes. From the figure
it is clear that initially the two curves coincide indicating that the

existence of flights between airports with few connections (less than k
5 30) is equally probable in the ATN and in its randomized version.
Instead, for k[ 30,60½ � the points corresponding to the real ATN stand
above those corresponding to the randomized network. This result
points out that the aggregate ATN displays Rich-club effect (the
largest effect being found for k 5 47), thus confirming for the
European case the findings of Colizza et al.28 for the ATN. The
existence of such effect is quite logical, as usually highly connected
nodes correspond to the principal airports of the main European
cities which, in most of the cases, are connected among themselves
via direct flights. Finally, for k.60 the fluctuations of the randomized
case are too large for any statement to be made on the existence of a
Rich-club effect.

Major versus low-cost layers. The European ATN is composed of
layers corresponding to airlines of different types. In particular, we
find among them major (national, such as Lufthansa), low-cost fares
(such as Easyjet), regional (such as Norwegian Air Shuttle) or cargo
(such as Fed-Ex) airlines. These kinds of airlines have developed
according to different structural/commercial constraints. For
instance, it is known that major airlines are designed following the
so-called hub and spoke structure, to provide an almost complete
coverage of the airports belonging to a given country40,41 and
maximize efficiency in terms of national transportation interests.
Low-cost companies, instead, tend to avoid overly centralized
structures and, to be more competitive, typically cover more than
one country simultaneously. To unveil the role that each type of
airline plays in the emergence of the topological features of the
aggregate ATN, we considered two subsets of layers respectively
comprising only it majors and low-cost airlines. The results of this
study are shown in Fig. 3.

We first address the cumulative degree distribution P.(k). In the
two panels (a) and (b) we show the distributions P.(k) for major (a)
and low-cost (b) layers when considering different levels for the
merging of the layers of the same kind. For major airlines, the typical

Figure 2 | Evolution of topological properties of the complete ATN network. (a) Average cumulative degree distribution P.(k) for groups of layers

merged together: single layers (N ), five layers (&), twenty layers (¤) and the aggregate (m). (b–c–d) Average clustering ÆCæ, size of giant component ÆSæ,
path length ÆLæ as a function of m. (e) Link abundance for nodes of degree k or greater, w(k) divided by its maximum w(k)max for the aggregate network in

both real case (&) and its randomized version (N ). The vertical dashed line represent the value of k at which the difference among the two curves is

maximal. (f) A subset of the aggregate network showing the connections among those nodes whose degree is greater than (or equal to) 47. The size of the

nodes is proportional to the degree.
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trend of a single layer (m 5 1) displays a plateau for moderate values
of k, indicating a centralized character of this kind of layers, with few
hubs having remarkably higher than average connectivity. In addi-
tion, when merging more layers (m 5 10 or all the major airlines) the
trend shows a rather continuous decay due to the combination of
hubs of different size (depending on the nation of the airline). Notice
that a hub of a single layer (a single national airline) is highly con-
nected within the same country, but also has some flights to capitals
of other European countries which, in turn, are hubs of their corres-
ponding major layers. On the other hand, the cumulative distri-
bution of typical low-cost airlines shows a rather different pattern,
as its decay is rather progressive, and airports of different size coexist
within the same layer.

The differences in organization of low-cost and major airlines is
further highlighted by the behavior of the clustering coefficient ÆCæ.
Panel (c) shows how major airlines display sharp increases in ÆCæ as
more major layers are merged, followed by a plateau for m . 5. This
saturation of C is due to the fact that, when merging major layers
randomly, national hubs tend to connect together (we have already
discussed this fact when introducing the Rich-club effect) in the
aggregate network. The saturation of clustering is, however, not
observed for the aggregate ATN [see Fig. 2.(b) or the inset in panel
(c)] for which C(m) always increases. This is due to the fact that the
merging of low-cost layers leads to a continuous formation of new
triangles, thus increasing the clustering with m. In addition, in panel
(d) we show the evolution with m of the average number of triangles,
Æn3æ, normalized with respect to the total number of triads in the
aggregate network for both major and low-cost layers. Interestingly,
the monotonic growth of Æn3æ reveals that the saturation of the clus-
tering coefficient when m 5 5 for major layers is not due to the fact
that new triangles are not added when m . 5 but to a balance
between the new triads and the new connections added when mer-
ging additional layers.

The behavior of the giant component ÆSæ, normalized with respect
to the total number of destinations covered by each kind of airline
(see panel (e)), does not give any particular insight in terms of differ-
ences between low-cost and major airlines, except for the fact that in
the low-cost case we observe larger fluctuations, mainly due to the

large variability in size of the giant component of single layers. On the
other hand, the picture described by the average path length ÆLæ in
panel (f) is very interesting. Major and low-cost subsets behave rather
differently not only between them, but also with respect to the evolu-
tion of the complete set (see inset). For layers corresponding to major
companies, ÆLæ increases with the number of merged layers. The
interpretation of this continuous growth is straightforward: each
time a layer corresponding to a major airline is added, even if it shares
some common destinations (say some European capitals having
their corresponding major airlines within the original set of merged
layers), the number of new available nodes (small destinations only
available through the new added major layer) is large enough to
generate an increase in L. On the contrary, the case of low-cost dis-
plays a rise-and-fall in the behavior of ÆLæ, due to the large coverage
of European countries/cities that already each single low-cost layer
displays. Thus, as we merge some of them together, they already
cover nearly all the low-cost destinations, and merging of additional
layers just adds new connections between them. When combined
into the original ATN, these two different trends lead to the saturated
evolution of ÆLæ(m) shown in the inset.

Finally, we examine once again the onset of the Rich-club effect.
From panels (g) and (h) we notice how the graph corresponding to
the aggregate network constructed by merging layers corresponding
to major airlines (g) displays the presence of a rich club for k 5 38
(almost the same value as in the case of the total aggregate ATN).
Interestingly, the Rich-club effect is absent when merging low-cost
layers so that, while in the case of major airlines the merge of layers
containing large hubs ends up in a system composed of a connected
core of highly connected nodes, the more distributed nature of the
low-cost layers prevents the formation of a Rich-club. Thus, a rel-
evant conclusion is that the well-known28 Rich-club effect observed
in ATNs is exclusively related to the presence of major airlines.

Discussion
The characterization of the interaction patterns in large systems has
recently been spurred by the incorporation of the paradigm of multi-
plexity. Taking advantage of the European ATN data set, with details
of the airlines operating each flight, we showed that the topological

Figure 3 | Evolution of topological properties of major (&) and low-cost (m) subsets. (a–b) Average cumulative degree distribution P.(k) for

different number of layers merged together. (c–d–e–f) Average clustering ÆCæ, number of triangles Æn3æ, size of giant component ÆSæ, path length

ÆLæ as a function of the number of layers merged. The insets display the same quantities in the case of the complete set. (g–h) link abundance for the

aggregate network. The vertical dashed line represents the value of k at which the difference among the two curves is maximal.
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properties of the ATN are generally not present in single layers,
rather they are the consequence of an emerging phenomenon inti-
mately related to the multilayer character of the system. We also
pointed out that the merging of low-cost and major (national) layers
leads to the emergence of qualitatively different aggregate networks.
Finally, we demonstrated that the combination of these two different
behaviors accounts for the many important structural features of the
global ATN, such as the Rich-club effect (mainly due to the layers of
major airlines), path redundancy (resulting from a cooperative com-
bination of the clustering of low-cost and major layers), or small-
worldness (remarkably enhanced by the presence low-cost layers).

Our study highlights the importance of considering the multiplex
character of most real networked systems, and shows that consider-
ing layers as relevant entities of a network (such as nodes and links at
the micro-scale or communities at the meso-scale) will contribute to
a better understanding and modeling of dynamical processes taking
place at the level of aggregate network.

Methods
Dataset. The data analyzed in this paper are taken from the complete list of
airlines operating Instrumental Flight Rules (IFR) flights between European
airports on a certain day obtained from EUROCON-TROL and the Complex
World Network in the context of the SESAR Work Package E42. We selected only
those airlines whose number of destinations is above the average (which is 32),
obtaining L~37 different airlines (layers), that include both major companies
(like Lufthansa or Air France), and low-fares (low-cost) companies (as Ryanair or
Easyjet). Each layer , in this multiplex representation is a graph

G‘~ N ‘
,E‘

� �
~ N ,E‘
� �

with N ‘
~N~450 nodes and K, links that models a

single airline. An example of such networks is shown in Fig. 1. The ensemble of all
these layers constitutes our multilayer system, that we will call the complete set.
We will also consider the subset of major airlines, that will be a multiplex network
made of L0~18 layers, and the subset of low-cost companies, with L00~10 layers.
Note that the remaining airlines, such as cargo airlines, constitutes a marginal
small subset and therefore its analysis is residual.

Topological indexes. In this section, we present a summary of the topological
measures used throughout the paper. Note that the considered topological measures
are essentially defined for classic monoplex networks, and their extensions to the
multiplex setting is an exercise, whose details are here shown.

One of the most basic topological parameter of a complex network G~ N ,Eð Þ is the
degree distribution P(k) which is defined as the probability that a node chosen uni-
formly at random has degree k, or equivalently the fraction of nodes in the network
having degree k3,35. Since broad distributions often display high noise levels at the end
of their tails, here related to the low abundance of highly connected nodes, it is
convenient to consider the cumulative distribution P.(k). Cumulative distribution
P.(k) is the probability that a randomly chosen node has a degree equal or greater
than k, i.e.

Pw kð Þ~ 1
N

X?
k0~k

N kð Þ, ð1Þ

where N(k) is the number of nodes with degree k and N~ Nj j is the total number of
nodes in the network.

The average path length4 L(G) is the average length of the shortest paths among all
the couples of nodes in the network, i.e.

L Gð Þ~ 1
N N{1ð Þ

X
i,j[N

dij, ð2Þ

where dij is the minimum number of hops one has to make to go from node i to node j
in G (the distance from i to j). Note that this definition diverges if G is not connected,
since dij may be infinite. One way to avoid this divergence is considering the average
only on the largest connected component, and an alternative approach that has been
shown very useful in many cases is considering the harmonic mean of the distances.

The (local) clustering coefficient4 ci of a node i[N is defined as

ci~
2 ei

ki ki{1ð Þ , ð3Þ

where ei is the number of neighbors of i which are mutual neighbors, and ki is the
degree of node i. Therefore the (local) clustering coefficient of a node i is the ratio
between the number of neighbors of i which are mutual neighbors and the maximal
possible number of edges between neighbors of i. The (average) clustering coefficient
C of a graph is the arithmetic mean of ci over all its nodes.

The giant component S(G) is the largest connected component of G and the size of
the giant component is the proportion of nodes in the network that belong to the giant
component, i.e.,

S Gð Þ~ max
i[N

Ni

N
ð4Þ

where Ni is the number of nodes of the maximal connected subnetwork of G con-
taining node i.

If we take a node with degree 0ƒkƒ Nj j, the Rich-club coefficient R(k)39 is given by

R kð Þ~ w kð Þ
w kð Þmax

w0 kð Þ
w0 kð Þmax

� �{1

~
2w kð Þ

Nwk Nwk{1ð Þ
Nwk Nwk{1ð Þ

2w0 kð Þ
~

w kð Þ
w0 kð Þ

, ð5Þ

where

(i) w(k) is the number of edges connecting nodes of degree greater or equal to k
(called the link abundance),

(ii) w(k)max is the maximum number of links that can exist between nodes of degree
k,

(iii) w9(k) is the link abundance on a network with the same degree sequence of the
original but with connections randomly shuffled.

(iv) w9(k)max is the maximum number of links that can exist between nodes of
degree k on a network with the same degree sequence of the original but with
connections randomly shuffled.

(v) N.k is the number of nodes with degree greater or equal to k.

If, for a certain value of k, R(k) . 1 for some 0ƒkƒN~ Nj j, then we say that G has
a Rich-club. Note that in the plots presented in this paper, we decided to present the
ratios w(k)/w(k)max and w9(k)/w9(k)max instead of R(k). The randomization, in our
case, is repeated 1,000 times, while the shuffling is repeated 10,000 times to ensure a
robust statistical sampling. Note that for the ATN network, having a size of N 5 450
nodes, the number of random shuffling steps is large enough to guarantee that the
resulting network is fully randomized. This randomization method is known as
Markov Chain Monte Carlo Algorithm43. However, for bigger graphs other methods
are recommended so to minimize the computation cost for producing reliable ran-
domized networks, see the work by Del Genio et al.44.

Next, we describe the layer merging procedure used to study the evolution of the
topological measures and the behavior of the layers in the major airline and low-cost
multiplex sub-networks.

If we fix a subset of layers G‘; ‘~‘1, � � � ,‘m
� 	

to merge together, we construct a
monoplex network G0~ N ,E0ð Þ (i.e. a classic network with only one layer) given by

G0~
[m
j~1

G‘j :

This network G9 is obtained by projecting all the m layers onto one and by con-
verting multiple links into single ones.

Now if we fix m, we look for all the possible mergings of m layers, The number of
different configurations to arrange n layers into groups of size m without repetitions is

given by Cn
m~

n
m

� �
, therefore if we want to compute a topological measure on the

ensemble of m layers, we should first compute it on each of the Cn
m mergings, and then

average over all Cn
m possible configurations. However, when the number of possible

configurations exceeded a certain threshold, we operated a random sampling over
500,000 mergings in order to avoid the growth of the computation time. Throughout
the paper the operator Æ?æ denotes the average over the elements of the ensemble. As
an example, if we want to compute the clustering coefficient over an ensemble C, we
compute:

Ch i~ 1
Ncomb

X
i[C

Ci, ð6Þ

where Ncomb is the number of elements of C and Ci is the average clustering of the
network obtained merging together the layers corresponding to i[C.
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22. Gómez-Gardeñes, J., Reinares, I., Arenas, A. & Florı́a, L. M. Evolution of
cooperation in Multiplex Networks. Scientific Rep. 2, 620 (2012).
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Abstract. We study the dynamics of the European Air Transport
Network by using a multiplex network formalism. We will consider
the set of flights of each airline as an interdependent network and
we analyze the resilience of the system against random flight failures
in the passenger’s rescheduling problem. A comparison between the
single-plex approach and the corresponding multiplex one is presented
illustrating that the multiplexity strongly affects the robustness of the
European Air Network.

1 Introduction

In the last century, the application of aeronautics to the transportation of people
and goods has witnessed an uninterrupted growth [1]. In less than a hundred years
we have moved from a sparsely connected system, to a redundant one capable of
moving 2.7 billion passengers in 2011. During the last decade, scientists have studied
the properties of airline transportation systems by means of network theory, un-
veiling their structural characteristics as done with other natural and technological
complex networks. Along this period, complex networks [2,3] have extensively been
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used to model and understand the structures of relations beyond many real-world sys-
tems [4,5], but only recently some limitation of this approach have been highlighted.
One of the most important limitations refers to the multi-layer nature of real-world
systems: nodes usually belong to different layers at the same time, and may have
different neighbourhoods depending on the layer being considered. It is clear that
nodes, in some complex systems, often have interactions of different kinds, which
take place upon several interacting networks, i.e. constituting a so-called multiplex
network. An example of this concept is represented by social networks [6]. Tradition-
ally, social networks have been modelled as simple graphs; yet, it should be noticed
that each node, representing an actor in the social network, may have different types
of connections with other nodes, such as friendship, professional relationships etc.
For such kind of systems, a multiplex model represents better the real situation, as it
can better catch the different dynamics developing in each layer: for instance, usually
the information transmitted to friends will not be the same as the one shared with
colleagues. Therefore, in order to understand how the structure is affecting the global
dynamics of a system, it is of utmost importance to take into account the presence
of interactions at multiple levels [7,8]. There are other concepts strongly related to
the multiplex networks that have recently been introduced in the literature, such as
interacting [9,10], interdependent [11] and multilevel networks [12].
Recently, several works have focused on the vulnerability of networks to cascading

failures, and especially how a multi-layer structure effectively reduces the resilience of
the system. For instance, ref. [13] analyzes different communication and transporta-
tion networks, composed of two layers: a physical and a logical network, the latter
representing the flows of information and people. In ref. [11], the Italian power grid
and the Internet network are modeled as a single dual-layer system; the interconnec-
tions between both layers drammatically increase the vulnerability of the system, as
a failure of a node may propagate to the other layer and generate a cascade dynamics.
In ref. [14], a generalization of the threshold cascade model is studied, in which nodes
are deactivated too if at least a given fraction of the neighbors have been deactivated.
The generalization consists in introducing a multi-layer structure, that was not con-
sidered as part of the original model [15]: thanks to that, some topologies that were
initially stable generate cascade dynamics when connected in a multi-layer paradigm.
In this contribution, we tackle the problem of the resilience of the Air Transport

Network (ATN) from a multi-layer point of view, against the deletion of a connection,
that is, the cancellation of a flight. The ATN is clearly one of the tenets of our societies.
In 2010, the global air transport dealt with 2.4 billion passengers and 43 million tonnes
of cargo, has been responsible for 32 million jobs, 2% of global carbon emissions and
$545 billion in revenue [16]. It embraces the whole world and tightly links together
the different regions, with all their individual differences.
The importance of the ATN is especially relevant when its dynamics is disturbed

by external events; even when these events have only a local impact, like, for instance,
a thunderstorm that forces the cancellation of a few flights, the indirect consequences
(in terms of delays, passengers loosing connections, and so forth) may affect the over-
all performance of the system. This situation is expected to worsen in the future,
as forecasted growth rates (about 5% per year [17], with crises, like the WTC at-
tack, SARS or the financial crisis [18], only having a temporary impact) will imply a
tightening of the room for manoeuvre available to cope with such disturbances. The
relevance of the resilience of ATN has recently been recognized in the policy-making
context, as, for instance, in the European Commission’s new roadmap (White Paper)
to a Single European Transport Area for 2050 [19,20].
The dynamics and resilience of the ATN has already been studied in the past

by considering the usual single layer network formalism in which all the connections
between airports are considered to be equivalent [21,22]. Yet, a study of ATN under
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Fig. 1. The European Air Transport Network (ATN). The network has been constructed
by considering only commercial (both regular and charter) flights operated between two
European airports the 1st of June 2011. Size and color of nodes accounts for their degree.

the multi-layer approach is still missing. The intrinsic multi-layer nature of ATN is
validated by the fact that passengers cannot use all the possible sequences of links
between the airports bypassing the cost associated to the use of different airlines.
This may negatively affect the resilience of the system, as well as the tools available
to the system to reduce the impact of failures on the flow passengers. This demands
for a study in which network and transportation sciences tackle the influence that the
multi-layer architecture of the ATN has in its robustness under random failures.

2 The European ATN as a multilayer network

We start by describing the structural multiplex backbone of the European Air
Transport Network (ATN) considered in our model. We consider a set of 15 layers,
each of which representing one of the 15 biggest airline companies operating in
Europe. In each layer � (that represents an airline A), the set of nodes corresponds to
the set of airports operated by the airline A and the links (denoted by (i, j; �)) are the
flights between the airports i and j that are operated by airline A. Data corresponds
to commercial IFR (Instrumental Flight Rules) operations for the 1st of June 2011.
The resulting multi-layer network (see Fig. 1) is an undirected system, composed of
15 layers and 308 nodes, corresponding to the 20% of the operations in the European
airspace.
Looking at the structural properties of the different layers, we realize that they are

organized in two main families: (1) networks corresponding to major airlines (such as
Lufthansa, Air France, or Iberia), being scale-free with hubs representing the airline
headquarters; and (2) networks corresponding to the so-called low-cost (or low-fares)
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Fig. 2. The Air Transport Networks of a traditional major company (on the left) and of a
low-cost airline (on the right). The hubs of each network are indicated by blue big circles.

airlines, showing a more uniform structure due to a point-to-point organization of their
business [23]. Figure 2 illustrates two of such layers: a traditional major company on
the left, and of a low-cost company on the right. In this figure the hubs of each network
are indicated by blue big circles; notice that the heterogeneity is much stronger in
traditional companies.
The introduction of a multiplex-type network for the European ATN produces

structural properties that differ from the corresponding single-mode network, i.e., the
single layer projection of the transport network. For instance, we focus here on the
global degree distribution P (kA) of the multi-layer network; the global degree of each
node i (denoted by kAi ) is calculated as the sum of the number of connections of that
node over all the layers. Therefore, kAi is defined as:

kAi =

L∑

�=1

k�i , (1)

where k�i is the degree of node i in the layer �. Figure 3 illustrates the cumulative
probability distribution of degrees of the European ATN in log-log scale. Clearly, there
are strong differences between the distribution for the multi-layer network model (top
left panel) and the average of the cumulative degree distribution over all the layers
considered (top right panel). Note that the degree of nodes in the case of the multi-
layer model is greater than the corresponding degree in the classic one-layer approach.
This phenomenon is even more explicit in the case of the hubs, since a link that could
happen in different layers is counted as many times as it is present in the multi-layer
network, while it is only counted only once in the classic model. Despite this fact,
one could expect that this enhancement of the degree is uniform along the network,
but the real situation is quite far from this. The heterogeneity of the structure and
distribution of each layer makes that the effects of the enhancement of the degree
of each node in the multi-layer network is very disperse and therefore the degree
distribution in the multi-layer model is very different from the corresponding classic
model. Furthermore, if we compute the average degree distribution along all the
layers in the network (see the top right panel in Fig. 3), the result is quite different
from the corresponding figure for the multi-layer model. Note that the average degree
distribution illustrate the average degree distribution if we pick up a layer at random
and we look at its degree distribution. Hence, the significant differences between
the top panels in Fig. 3 illustrate the different behavior of the multiplex model and
the corresponding for each single layer, that comes from the heterogeneity of the
structure and distribution of the network. A similar situation occurs if we consider

85



Spatially Embedded Socio-Technical Complex Networks 27

10-3

10-2

10-1

100

100 101 102

P
>
(k

)

k

10-3

10-2

10-1

100

100 101 102

P
>
(k

)

k

10-3

10-2

10-1

100

100 101 102

P
>
(k

)

k

10-3

10-2

10-1

100

100 101 102

P
>
(k

)

k

Fig. 3. Example of different cumulative degree probability distributions P>(k) for the
European ATN in log-log scale. Top panels show the degree distribution for the multi-layer
network model (on the left), and the average of the degree distributions of the 15 airlines
under study (on the right). Bottom panels illustrate the cumulative distributions for a single
traditional major company of 106 nodes (on the left) and for a low-cost company of 128 nodes
(on the right).

the cumulative probability distribution of each single layer individually (see Fig. 3
bottom).

3 The model

As anticipated above, we will consider the set of direct flights of the same airline
as the links of one independent network, i.e., a single layer. On the other hand, each
of the N nodes of the ATN will be present in each of the layers. Thus the collection
of the L layers composes a multiplex representation of the ATN. Each of the layers
will be denoted by a super index � = 1, . . . , L so that the shortest distance between
each couple of nodes within the same layer is denoted as d�ij and the degree of a node

i within layer � is k�i .
Once the topology of each layer of the multiplex ATN is characterized, we imple-

ment a model for the flow of a set of Np passengers. First we assign the routes followed
by each of the Np passengers that move across the ATN. To this aim, and for each
of the Np passengers, we randomly choose two nodes of the ATN (one accounting
for the origin and one for the destination of the passenger). Both nodes are selected
proportionally to their global degrees kAi , as defined in Eq. 1. In this way, a node i
will be selected as origin or destination of a given passenger with a probability:

P (i) =
kAi∑N
j=1 k

A
j

· (2)

Obviously, paths starting from and ending at the same node are not allowed. Once
the origin and destination of a passenger have been chosen, we search among all the
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layers the one for which the distance between the origin i and the destination j is
minimal, i.e., dij = min{d�ij , � = 1, . . . , L}. The distance between two airports, dij ,
is here defined as the hopping distance, i.e., the sum of the number of jumps needed
to reach the destinations; other factors usually taken into account by the passenger
(like duration of the flight, cost, and so forth) are here disregarded. If there is more
than one layer with the same minimum distance, one of them is randomly selected
with equal probability; notice that this is equivalent to a passenger selecting one
of the multiple airlines available to reach its destination. Finally, after the layer is
selected, we compute the shortest path between origin and destination; a shortest
path is randomly chosen when more than one was available.
The above process ends when all the Np passengers have selected a couple of

nodes (that is, their origin and destination), an airline (the layer) and a route (the
shortest path between origin and destination nodes in the selected layer). Then, we
can compute the load of each link (i, j; �), L(i, j; �), in each of the layers of the ATN,
defined as the number of passengers whose path pass through it. In addition, for each
link in the system, we assign a maximum load LM (i, j; �) as:

LM (i, j; �) = L(i, j; �)(1 + ftol), (3)

where ftol accounts for the fraction of additional load that each link can handle. For
instance, a value of ftol = 0.2 implies that airlines leave a number of vacant seats
equal to the 20% of the real load. In what follows, we analyze situations in which
0 ≤ ftol ≤ 0.3, in line with the load factors observed in real operations (70% for short
flights, and 80% for long-range connections [24]).
Once the model has been initialized, we simulate a random failure of the system by

randomly removing a fraction of the links. With this aim, we visit each link connecting
two nodes i and j in a given layer �, and with some probability p we remove that link.
As a consequence, all the passengers whose original paths passed through one (or
more) of the removed links have to be re-scheduled, i.e., they are forced to look for
an alternative route between their departure and destination airports. As a previous
step to the re-scheduling of a passenger, we decrease by one the load of the remaining
active links in the passenger’s original path.

3.1 Re-scheduling algorithm

After simulating the perturbation of the original system, we proceed with the re-
scheduling phase. For each affected passenger, we try to find a new path between the
origin i and the destination j of distance dij(n) = dij + n (being dij the original dis-
tance in the unperturbed ATN), with n = {0, 1, 2, . . .}. Obviously, we start by trying
to allocate passengers in new routes with n = 0, so that the number of connections
required for completing the trip (a proxy for the cost incurred by passengers) is not
increased. Thus, for a given value of n, we proceed as follows:

(i) We recalculate all the active paths between each pair of nodes (i, j), within
the same layer �. We impose the distance between the pairs of nodes to be
dij(n) = dij + n. Two situations may lead to the absence of active paths of
length dij in a layer �:
(a) there are no paths of this length in the original multiplex graph.
(b) there are some paths of length dij(n), but all of them contains removed or
full (see below) links.

After this stage, each passenger is classified as either fly (he/she already has a
route assigned, not affected by the removal of links), re-scheduling (he/she has
the possibility of being assigned to an active route) or no-fly (there is no active
path of distance less or equal to dij(n) in any of the layers).
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(ii) We take all the passengers one at the time in the re-scheduling group. For each
of them:
(a) We take their original layer and try to construct an (active) alternative path
enabling the passenger to reach its destination whenever possible. If the
chosen active path does not contain any full (see below) link, then the
passenger is classified as fly and the load of each link in the chosen path
is increased by one. Those links that reach their total capacity LM (i, j; �)
with the addition of this last passenger are then classified as full.

(b) If after step (ii.a) the passenger remains as re-scheduling, we repeat this last
step for all the layers that contain at least one active path of length dij(n)
between its origin i and destination j. Again, if the passenger is successfully
re-scheduled, it goes to the fly club and we add 1 to the load of each links
used. If any of these links reaches its capacity LM (i, j; �), then it is classified
as full.

(iii) Once all the passengers in the re-scheduling compartment have been processed,
we check the remaining number of re-scheduling passengers. If it is non-zero,
we go again to step (i).

At the end, of the above iterative process, we partitioned the set of passengers into
the subsets of fly and no-fly. We then perform the above process for different values
of n increasing from n = 0. After each round n, passengers classified as no-fly are
introduced again in the model as re-scheduling at the beginning of round (n+ 1). In
principle, n can be increased as many times as desired; nevertheless, to be realistic,
we stop the algorithm at n = 2, meaning that passengers could, at most, look for
alternative paths that are up to two steps longer than their original ones. Thus,
at the end of round n = 2, no-fly passengers are those for which no active path
of the former length exists between their origins and destinations. The rest of the
passengers have been efficiently re-scheduled and take part of the final fly club1. It
is worth noticing that this re-scheduling algorithm does not include any information
about alliances between airlines; this means that (i) passengers cannot plan their trip
by connecting flights of different airlines, and (ii) that the re-scheduling is unbiased,
while in the real world airlines try first to accomodate passengers in flights of the
same alliance.

4 Results

In this section we will explore the effects that link deletion causes on the flow of
passengers across the multiplex ATN. To shed light on the effects on multiplexity, we
compare the results obtained in the multiplex network with those of the aggregate
ATN. The model introduced in the previous section has two parameters, namely the
probability p that a link is deleted, and the fraction of tolerance ftol that airlines
assign to their connections. In what follows, we explore the robustness of the ATN as
a function of the former two parameters.

4.1 Robustness of the ATN as a multiplex network

In order to characterize the effects that link deletion has on the re-organization of the
flow in the multiplex ATN, we considered the partition into different groups of the

1 Let us remark that we are assuming that passengers try to move to other airlines (layers)
in order to avoid longer trips than those originally planned, i.e., the case n = 0. Only when
this latter attempt fails, they consider to perform longer trips (n > 0).
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Fig. 4. Outcome of the re-scheduling process as a function of the probability of link fail-
ure, p, and load tolerance, ftol. Each column displays (from top to bottom): the average
fraction of passengers that cannot fly (fnf ), that of those that are re-scheduled in other
layers (fol), and that for those re-scheduled within the original layer (fsl). Each column
accounts for the possibility of scheduling passengers on paths with length up to dij(n) with
n = 0 (left), n = 1 (center), and n = 2 (right). Results shown here refer to a population of
Np = 50000 passengers and are averaged over 50 different realizations. p spans logarithmi-
cally in the range [10−3, 1], while ftol spans in the range [0, 0.3].

total population of NA(≤ Np) passengers affected by link deletion. This population
can be divided into two groups: one, of size Nf , composed of those passengers that can
reach their destination thanks to the re-scheduling process; and another group, of size
Nnf , composed of those passengers that cannot be accommodated after the random
failure of the system. Following this classification, we have that NA = Nnf +Nf . In
order to clearly monitor the effect of having different layers (airlines) in the multiplex
ATN, we further split the group of Nf passengers that have been successfully re-
scheduled into two other groups: those Nsl passengers that are re-scheduled within
the same layer as originally planned, and those Nol passengers that were forced to
change layer in order to reach their corresponding destinations. With this new division
we obtain the following equality: NA = Nnf +Nsl +Nol.
The three groups (no-fly, same-layer and other-layer) completely describe the

final state of the population of affected passengers. In Fig. 4 we plot the fraction
of passengers belonging to each compartment: fnf = Nnf/NA, fol = Nol/NA and
fsl = Nsl/NA, as a function of the two parameters p and ftol. We also show how
these quantities behave by iterating the re-scheduling algorithm for several values
of n. Namely, in the left column of the figure we show (from top to bottom) the
panels corresponding to fnf (p, ftol), fol(p, ftol) and fsl(p, ftol) for n = 0, i.e., when
passengers are allowed to perform alternative trips only if their lengths are equal to the
original one. In this plot we observe that there are almost no re-scheduled passengers
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flying across their original layers. This points out the low degree of redundant shortest-
paths between two nodes in a given layer. As a consequence, almost all the successfully
re-scheduled passengers are forced to change airline. The number of efficiently re-
scheduled passengers (Nsl+Nol) decreases with p and increase with ftol. However, as
can be observed in the top panel, the number of no-fly-passengers is extremely large
even for a low rate of link deletion and a high degree of tolerance. Namely, for a value
of p ∼ 10−2 and a degree of tolerance of about 10%, the fraction of no-fly passengers
lies over the 50% of the population initially affected by the removal of links.
The constraint imposed in the case n = 0 seems too restrictive to achieve an

efficient re-allocation of passengers, as it does not allow passengers to perform al-
ternative paths in their respective original layers, at the cost of increasing the total
length. Therefore, we relax this constraint and explore the cases n = 1 and n = 2
in the middle and right columns respectively. From these panels we observe that the
average fraction of no-fly passengers (upper panels) is much lower than in the previ-
ous case n = 0. The decrease becomes more apparent for those regions corresponding
to high values of load tolerance and low values of p. Remarkably, contrary to the case
for n = 0, both for n = 1 and n = 2 some of the re-scheduled passengers succeded in
traveling through alternative routes within their original layer. Besides, we observe
that the plots corresponding to n = 1 and n = 2 are quite similar, pointing out that
allowing the search for routes with n > 2 would not improve the results. Therefore,
the plot of fnf (p, ftol) for n = 2 indicates a relative weakness of multiplex ATN with
respect to perturbations, given that, even for very large values of tolerance and very
low values of p, there is always some non-zero fraction of no-fly passengers.

4.2 Aggregate network results

In order to gain more insight on the effects of the multiplex structure of our system, we
now show the results obtained with the same re-scheduling algorithm on the aggregate
version of the ATN. Such aggregate network is obtained by merging all the layers of
the multiplex representation into a single one, i.e., by projecting the multiplex graph
into a simplex one. This projection produces a complex network with the presence
of multiple links between those couples of nodes that were connected in more than
two layers; in other words, the number of connections between two airports is given
by the number of airlines operating between them. In order to test whether the
robustness of the aggregate network is larger than that of the multiplex network, we
have performed the same link removal process followed by the re-scheduling program
described in Sect. 3, this time considering the single layer comprising all the links in
the aggregate ATN.
Figure 5 shows the final state of the system for the same three scenarios explored

for the multiplex ATN, namely n = 0, 1 and 2. Since the aggregate ATN is composed
of a single layer, in this case we only focus on the fraction of passengers affected by
link deletion that are not able to be efficiently re-scheduled, fnf (p, ftol). As observed
from the three panels in Fig. 5, compared with the corresponding panels fnf (p, ftol)
for the multiplex ATN, the fraction of no-fly passengers decreases considerably in the
three studied cases. In particular, while for those regions of the plot corresponding
to p > 10−1 remains roughly the same as in the case of the multiplex ATN, the main
differences show up for low values of p; specifically, for n > 0 we can observe regions
for which almost all the affected passengers can be re-scheduled, with an almost empty
no-fly set. Again the panels corresponding to n = 1 and n = 2 are identical pointing
out that the system is unable to achieve a better balance of affected passenger by
increasing the length of the alternative trips. As a conclusion, the aggregate network
shows an improved robustness with respect to the multiplex one, and a null impact
of link deletion for some range of parameters.
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Fig. 5. Effect of link removal on the final state for the case of the aggregate network.
We plot the average fraction of passengers that are not able to fly (fnf ) as a function of
the probability of link removal, p, and the load tolerance, ftol. Each column accounts of
the possibility of re-scheduling passengers by means of paths of length up to dij(n) with
n = 0, 1, 2. Simulations are run with the same parameters and under the same conditions of
those shown in Fig. 4.

This comparison confirms that multiplexity affects the robustness of the ATN. The
root of the differences between the performance of both topologies is the constraint
imposed by the multiplex architecture, which forces passengers to move within single
layers. Therefore, in order to find an efficient alternative path, the affected passenger
cannot mix connections of different airlines (layers) into the same path, thus reducing
his capacity of optimizing the movement. This constraint disappears in the aggre-
gate network, allowing affected passengers to make use of hybrid alternative paths.
This provides the aggregate system way out to re-schedule the affected population of
passengers in an efficient manner.

5 Conclusions

We presented a model for studying the re-scheduling problem in the European Air
Transport Network using the paradigm of multiple layers structure, where each layer
is made by the flights of a given airline. it is worth noting that, when comparing
this multi-layer network with an equivalent single layer representation, topological
characteristics differ, both qualitatively and quantitatively, as exposed in Sect. 2.
Furthermore, on top of this multiplex network, we built a dynamical model, account-
ing for the re-scheduling problem of a group of passengers affected by the random
failures of a set of connections. The affected passengers are then re-scheduled on new
itineraries according to the availability of new routes (and free seats) in their former
airline first, or eventually in a different one. The availability of routes is modulated
by the probability of link failure p, and the tolerance on the load of a link ftol. We
presented our results in terms of the number of those passengers that are success-
fully re-scheduled and those for which the re-scheduling procedure fails. To achieve a
deeper insight on the effects of dealing with a layered structure, we further subdivided
passengers who are successfully re-scheduled into two subcategories: those which con-
tinue their trip using the same airline and those who, instead, are forced to switch to
a different one. In addition, in order to increase the realism of our model, we allowed
passengers to be re-allocated also on paths which are longer than the former ones.
When compared to those corresponding to the single-layer representation, our results
indicate that the multi-layer structure strongly reduces the resilience of the system
against perturbations. In other words, the use of a projection of the ATN system is
an over-simplification that results in an over-estimation of the resilience of the ATN.
While it is known that a multi-layer structure can drammatically change the resilience
of the system [11], to the best of our knowledge this is the first application of such
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representation to the air transport system; all previous studies (see, for instance, [22])
only considers projections of the network. We anticipate that this framework may be
an important tool for policy makers in the near future, especially when other elements
(e.g., more real estimation of the distance between airports, airline alliances, estima-
tion of the costs of re-routing, etc., here excluded for the sake of simplicity) would
be included. We also believe that these results could also be valid in other real-world
complex systems, which have been widely studied in the last decade under the single
layer network paradigm, when their multiplex nature is taken into account.
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A novel regime of synchronization, called remote synchronization, where the peripheral nodes

form a phase synchronized cluster not including the hub, was recently observed in star motifs

[Bergner et al., Phys. Rev. E 85, 026208 (2012)]. We show the existence of a more general

dynamical state of remote synchronization in arbitrary networks of coupled oscillators. This state is

characterized by the synchronization of pairs of nodes that are not directly connected via a physical

link or any sequence of synchronized nodes. This phenomenon is almost negligible in networks of

phase oscillators as its underlying mechanism is the modulation of the amplitude of those

intermediary nodes between the remotely synchronized units. Our findings thus show the ubiquity

and robustness of these states and bridge the gap from their recent observation in simple toy graphs

to complex networks. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4824312]

In this work we show a novel synchronization state in

networks of coupled oscillators. This state, called Remote

Synchronization, is characterized by the synchronization

of pairs of nodes that are not directly connected via a

physical link or any sequence of synchronized nodes.

Moreover, remote synchronization is manifested when

considering oscillators having amplitude and phase as

dynamical variables, in contrast to the usual setting in

which phase oscillators are considered, as its underlying

mechanism is the modulation of the amplitude of those

intermediary nodes allowing the exchange of information

between remotely synchronized units. Although some

previous observations of such phenomenon were made in

simple star-like graphs, here we show its ubiquity in the

general framework of complex networks. To this end we

analyze its existence as a robust dynamical state that

appears before global synchronization shows up. Our

findings thus open the door for experimental observations

of this novel state in which the existence of a synchron-

ized pair cannot be associated to a given physical interac-

tion through a single link of the network. In addition, our

results highlight the important difference between the

real (i.e., associated to physical links) and the functional

(i.e., emerging from synchronization) connectivity of a

network.

I. INTRODUCTION

Synchronization constitutes one of the most paradig-

matic examples of emergence of collective behavior in natu-

ral, social, and man-made systems.2–4 Its ubiquity relies on

the general framework in which it occurs: the interaction

between two or more nonidentical dynamical units that, as a

consequence, adjust a given property of their motion. As

coupling between units increases, synchronization shows up

as a collective state in which the units behave in a coordi-

nated way. Synchronization phenomena span across many

life scales, ranging from the development of cognitive tasks

in neural systems5 to the onset of social consensus in human

societies.6

The ubiquity of synchronization in real systems together

with the recent discovery7–11 of their real architecture of inter-

actions has motivated its study when units are embedded in a

complex network.12 In this way, each unit is represented as a

node of a network while it only interacts with those adjacent

units, i.e., those directly coupled via an edge. In the last dec-

ade many studies have unveiled the impact that diverse inter-

action topologies have on the onset of synchrony13–17 and its

stability.18–21 In addition, related issues such as that of adapt-

ive networks, in which the interaction pattern changes accord-

ing to the degree of synchronization of the system, have also

attracted the attention of the community.22–25

The former studies mainly rely on the study of coupled

phase oscillators, such as the Kuramoto model,26,27 which

produces globally synchronized systems as a result of the

direct interaction of pairs of adjacent units. However, it has

been recently found1 that, for more general oscillator models

(in which both amplitude and phase are dynamical variables)

such as the Stuart-Landau (SL) model,3 two oscillators,

which are not directly linked but are both connected to a

third unit, can become synchronized even if the third oscilla-

tor does not synchronize with them. This novel phenomenon,

termed remote synchronization, relies on the modulation of

the amplitude parameter of an intermediary node allowing

the passage of information between two of its neighbors for

their synchronization, even when the former is not synchron-

ized with them. Thus, this tunnel-like mechanism is out of

reach in ensembles of phase oscillators. Although the term

remote synchronization has been used in quite different con-

texts, as, for example, in computer science where it refers to
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synchronization of two or more files located in two, remotely

connected, computers or in some synchronization schemes

for dynamical systems,28 to emphasize the remote location

of the receiver with respect to the transmitter, we will use it

to refer to the novel form of synchronization as reported in

Ref. 1.

Remote synchronization has been found to occur in very

specific and simple topologies, such as star-like networks in

which the central node has a natural frequency different

from that of the leaves. Within this particular setting, it was

numerically and experimentally shown1 that leaves become

mutually synchronized without the need of the synchroniza-

tion of the central node. In this paper, we aim at showing

that remote synchronization is not limited to the particular

configuration of a star-like motif or a tight specification of

the node frequencies. To this end, we introduce a general

procedure for detecting remote synchronization in arbitrary

networks and then discuss the results of our analysis on arbi-

trary complex networks.

II. MEASURES OF REMOTE SYNCHRONIZATION

In Ref. 1, where star motifs were dealt with, remote syn-

chronization is detected by observing that for intermediate

values of the coupling coefficient the synchronization level

among the leaves (measured with the so called indirect
Kuramoto parameter) is higher than that between the hub

and the leaves (measured with the so called direct Kuramoto

parameter). We note that such measures are not applicable to

the general case of arbitrary topologies, since they are based

on an a priori analysis of the network structure which allows

one to establish which nodes can remotely synchronize.

Therefore, in this paper we first introduce a general proce-

dure for detecting remote synchronization in arbitrary net-

works and then show ubiquity and robustness of remote

synchronization in the general case of complex networks.

To this end, we consider a network of N coupled Stuart-

Landau oscillators.3 Each node i is characterized by two var-

iables, ðxi; yiÞT , whose dynamical evolution is as follows:

_xi

_yi

� �
¼

a� x2
i � y2

i �xi

xi a� x2
i � y2

i

 !
xi

yi

� �

þ k
ki

XN

j¼1
aij

xj

yj

� �
�

xi

yi

� �� �
; (1)

where
ffiffiffi
a
p

and xi are, respectively, the amplitude and the

(natural) frequency of oscillator i when uncoupled. The sec-

ond term on the right accounts for the coupling of the dy-

namics of node i with its ki neighbors. The strength of the

coupling is controlled by k (k¼ 0 in the uncoupled limit)

while A ¼ faijg represents the adjacency matrix of the net-

work defined as: (i) for i 6¼ j, aij¼ 1 when nodes i and j are

connected while aij¼ 0 otherwise and (ii) aii¼ 0.

To study the synchronization properties of system (1),

we work with the phase variable of each oscillator, defined

as hi ¼ tan�1ðyi=xiÞ. Then we can measure the degree of syn-

chronization of any (connected or not) pair of oscillators by

means of the time averaged order parameter

rij ¼ jhei½hiðtÞ�hjðtÞ�itj; (2)

where h�it means an average over a large enough time inter-

val and i ¼
ffiffiffiffiffiffiffi
�1
p

. We will consider two nodes as synchron-

ized when rij> d, where d is a constant threshold that we fix

to d¼ 0.8. Nonetheless, we checked that the results pre-

sented are robust as other values of d yield qualitatively the

same outcomes.

Once two nodes i and j are classified as mutually

synchronized we label their relationship according to the fol-

lowing three situations: (i) i and j are directly connected

(aij¼ aji¼ 1), (ii) there is a path of mutually synchronized

nodes between them, and (iii) neither of the former two sit-

uations hold. While the first two cases are similar, as both

are examples of synchronization through physical links, the

third case is analogous to the observed remote synchroniza-

tion in a star-like network, but in the more general context of

a complex network. Thus, we define that two nodes i and j
are remotely synchronized (RS) when they are synchronized

(rij> d) and they are not connected by either a direct link or

a path of synchronized nodes.

To quantify systematically the extent of remote synchro-

nization we count the number of RS nodes, defined as the

number NRS of nodes that appear RS with at least another

node in the network. This allows us to introduce the follow-

ing order parameter: nRS¼NRS/N, representing the normal-

ized number of RS nodes with respect to the total number of

nodes N. Finally, to quantify the importance that remote syn-

chronization has on the dynamics of the system we also mea-

sure the global level of synchronization through the usual

Kuramoto-like order parameter

r ¼ 1

N2

XN

i;j¼1

rij: (3)

Note that r takes into account the contribution of both

synchronized (rij> d) and not synchronized (rij� d) nodes.

III. RESULTS

As two well-known paradigmatic network topologies we

have analyzed both Erd}os-R�enyi (ER) and Scale-free (SF)

graphs. The former type of networks is characterized by a

Poisson distribution P(k) for the probability of finding a node

with k contacts while SF graphs show a power-law distribu-

tion, PðkÞ � k�c. Thus, while in ER graphs most of the nodes

are close to the mean connectivity hki, SF networks display a

large heterogeneity in the number of contacts per node as

revealed from the existence of hubs having ki � hki. For

their construction we have made use of the model introduced

in Ref. 29 that allows one to control the mean connectivity

of both networks in order to be exactly the same. In the net-

works reported in this paper the size and mean connectivity

are fixed to N¼ 100 and hki ¼ 2, respectively. The SF net-

works generated with this model have c¼ 3. Finally, in order

to stay close to the framework used in Ref. 1, we have con-

sidered a bimodal distribution for the natural frequencies of

the oscillators so that nodes with high degree (those analo-

gous to the central nodes in a star graph) present a larger

043103-2 Gambuzza et al. Chaos 23, 043103 (2013)

Downloaded 02 Oct 2013 to 155.210.135.71. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://chaos.aip.org/about/rights_and_permissions

95



frequency, xh, than that, xl, of less connected (the ones play-

ing the role of leaves in the star topology). In particular, we

labeled as hubs those nodes having ki> k* (Ref. 30) and

assigned them xi ¼ xh þ nixh, while for the rest of nodes

xi ¼ xl þ nixl. In the former expressions ni is a random

variable uniformly distributed between �0.025 and 0.025.

In Fig. 1, we show the emergence of remote synchroni-

zation as a function of the two relevant parameters: the cou-

pling strength k and the frequency mismatch of the network

hubs Dx ¼ xh � xl. In particular, we report the behavior of

the global synchronization, r [panels 1(a) and 1(c)] and the

fraction of RS nodes, nRS [panels 1(b) and 1(d)] for SF (top)

and ER (bottom) networks. The results are averaged over 50

different network instances and, for each network, we aver-

age the results over 10 different realizations of the distribu-

tion of natural frequencies.

We find that remote synchronization occurs in both types

of networks in a region of parameters characterized by a

strong frequency mismatch Dx and moderate coupling k. In

fact, for low values of the coupling parameter, nodes cannot

synchronize (either in a direct or remote way) as observed

from the low values of r and nRS. On the contrary, for large

values of k the network is fully synchronized (r ’ 1) and,

accordingly, nRS assumes values close to zero since all the

nodes are mutually synchronized with their neighbors. As

panels 1(a) and 1(c) reveal, the onset of full synchronization

requires greater values of the coupling as the frequency mis-

match increases. In fact, a large frequency mismatch together

with values of coupling under the threshold for complete syn-

chronization favors the onset of remote synchronization, as

observed from the behavior of nRS in panels 1(b) and 1(d).

Compared to SF networks, the values of nRS in ER net-

works are greater, thus indicating that remote synchroniza-

tion in ER networks involves a larger number of nodes.

Moreover, in ER networks the onset of remote synchroni-

zation occurs for lower values of k. ER and SF networks

also show qualitative differences in the appearance of

remote synchronization: by keeping fixed Dx and increas-

ing the value of k, we find that nRS in SF networks show

two peaks, while for ER networks it shows a rise-and-fall

behavior.

In both (ER and SF) cases remote synchronization

appears as an intermediary state before full synchronization

is achieved. However, from the analysis of panels 1(a) and

1(c) one observes that the behavior of r vs. k for a fixed value

of Dx is qualitatively different in SF and ER networks. In

particular, in ER networks (panel 1(c)) a large plateau

around r ’ 0:5 is set in the region where remote synchroni-

zation shows up. In this region, the increase of k does not

contribute to the overall synchronization level, but to a

redistribution of the average oscillation frequencies of the

network nodes.

This is evident in Fig. 2, where the average values (over

the simulation time T) of the instantaneous frequency of

each oscillator are reported along with the parameter nRS.

The results are obtained by increasing k adiabatically from

k¼ 0 so that the system starts from a bimodal distribution as

dictated by the configuration for the natural oscillations. As

k increases, the gap between the two main frequency values

of the bimodal distribution decreases until the network

reaches full synchronization and the nodes oscillate at a com-

mon frequency. The readjustment of frequencies reveals

FIG. 1. Evolution of the degree of

global synchronization r [panels (a) and

(c)] and the number of remotely

synchronized nodes nRS [panels (b) and

(d)] for SF (upper panels) and ER

(bottom panels) networks as a function

of the coupling strength k and the fre-

quency mismatch Dx. In both cases the

networks have N¼ 100 and hki ¼ 2.

The other relevant parameters are fixed

to a¼ 1, xl¼ 1. Remote synchroniza-

tion (high values of nRS) is found for

strong frequency mismatch Dx and

moderate coupling k, while, for low

values of the coupling parameter, nodes

cannot synchronize (r and nRS have low

values), and, for large values of k, the

network is fully synchronized (r ’ 1).
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that, for some values of the coupling, the system undergoes a

strong reorganization, as shown by the spread of the oscilla-

tion frequencies between the two extreme values. This read-

justment coincides with the peaks displayed by nRS in both

SF and ER networks. However, the readjustment seems to

occur faster in SF networks for which the plateau of r is not

observed.

Now we illustrate the role of parameter a. To this end,

we consider a general graph and show that for a� 1

the SL model transforms into a network of Kuramoto

oscillators, so that the amplitude of the oscillators become

decoupled and stationary. We consider Eq. (1) in polar

coordinates

_qi ¼ aqi � q3
i þ

k
ki

XN

j¼1
aijðqj cosðhj � hiÞ � qiÞ;

_hi ¼ xi þ
k
ki

XN

j¼1

qj

qi

aij sinðhj � hiÞ; (4)

where qie
ihi ¼ xi þ iyi. Defining Ri ¼ qiffiffi

a
p , where

ffiffiffi
a
p

is

the value of the amplitude at the equilibrium, Eq. (4) can be

rewritten as follows:

_Ri ¼ aRi � aR3
i þ

k
ki

XN

j¼1
aijðRj cosðhj � hiÞ � RiÞ;

_hi ¼ xi þ
k
ki

XN

j¼1

Rj

Ri
aij sinðhj � hiÞ: (5)

In the first equation we can rescale time according to

dT¼ adt (while the second equation remains unchanged)

dRi

dT
¼ Ri � R3

i þ
k

aki

XN

j¼1
aijðRj cosðhj � hiÞ � RiÞ;

_hi ¼ xi þ
k
ki

XN

j¼1

Rj

Ri
aij sinðhj � hiÞ: (6)

Now as a!1 the coupling term in the amplitude equa-

tion vanishes, and from the analysis of the first equation we

derive that Ri! 1 for all i (in fact Ri¼ 1 is the only equilib-

rium and the dynamics evolve very fast as dT¼ adt and a is

large). In the second equation, Ri ! 1 leads to Ri

Rj
¼ 1 and

thus the second equation becomes

_hi ¼ xi þ
k
ki

XN

j¼1

aij sinðhj � hiÞ: (7)

Therefore, as a ! 1, we recover the model of

Kuramoto purely phase oscillators coupled into a network.

In this limit, we observe that the amplitude equation plays

no role. In this case, the level of RS is very low, as for

instance reported in Fig. 3, where a network of Stuart-

Landau oscillators with a¼ 1 is compared with a network

of Stuart-Landau oscillators with a¼ 1000 and with a net-

work of Kuramoto purely phase oscillators. We note that

for a¼ 1000 the network of Stuart-Landau oscillators is al-

ready a good approximation of the network of Kuramoto

purely phase oscillators. In both the two examples of

networks (SF and ER), for Kuramoto oscillators nRS

(Figs. 3(a) and 3(b)) is lower than in Stuart-Landau oscilla-

tors (with a¼ 1). The lower level of RS in Kuramoto oscil-

lators is more evident when the number of RS links,

labeled as LRS, is examined as in Figs. 3(c) and 3(d), which

shows how the number of RS links is decreased by an order

of magnitude with respect to the case of Stuart-Landau

oscillators (with a¼ 1). This suggests that amplitude mod-

ulation is the main mechanism underlying RS (this was

also shown with other arguments in Ref. 1 for star-like

networks).

To gain more insight into the relation between the re-

gime of remote synchronization and the onset of global syn-

chrony, we now consider the analysis of all synchronized

pairs and its partition into those corresponding to remote

synchronization and those for which a synchronized physical

connection (either a direct link or a path of synchronized

nodes) exists. To this aim, we define gij¼ 1 if nodes i and j
are connected either by a physical link or by a path of

synchronized nodes and gij¼ 0, otherwise. We then intro-

duce the following quantities:

FIG. 2. Evolution of the average oscillation frequency of each oscillator and nRS as a function of k for SF (a) and ER (b) networks. The mismatch of natural fre-

quencies is Dx¼ 1.5 while the rest of parameters are the same as in Fig. 1. The average oscillation frequencies, which for k¼ 0 start from a bimodal distribu-

tion as dictated by the configuration for the natural frequencies, as k is increased tend towards a common value, characterizing full synchronization. The strong

reorganization of the frequencies (characterized by a spread of the oscillation frequencies between the two extreme values) corresponds to the values of cou-

pling for which nRS is peaked.
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fP ¼

XN

i;j¼1
gijHðrij � dÞXN

i;j¼1
Hðrij � dÞ

(8)

and

fRS ¼

XN

i;j¼1
ð1� gijÞHðrij � dÞXN

i;j¼1
Hðrij � dÞ

; (9)

where H(x) is the Heaviside function. Thus, fP and fRS repre-

sent the fraction of synchronized links due to a physical or

remote connection, respectively. Obviously, as fPþ fRS¼ 1,

it is enough to report the behavior of fRS.

In Fig. 4 we show the evolution of fRS vs. k for several

values of Dx. The presence of two peaks in the evolution of

fRS in SF networks reveals a similar behavior to that found for

nRS. As Dx increases, the percentage of RS links increases

and the two peaks shift towards increasing values of k. On the

other hand, for ER networks the percentage of RS links is

higher than in SF networks and fRS shows, as in the case of

nRS, a rise-and-fall trend. The fall in the number of RS links

points out that the network is able to recruit physical links to

get synchronized and thus those regions that appeared as RS

become merged into a single component made of physically

synchronized links.

To visualize the progressive substitution of RS links by

physical ones in the path towards full synchronization, we

show in Fig. 5 for an ER network (with Dx¼ 2.8) snapshots

of both remotely and physically synchronized links for two

values of the coupling k. In Figs. 5(a) and 5(c) we plot two

networks corresponding to physically and remotely

synchronized links, respectively, when k¼ 1.65. In this case

the network is divided into several clusters of physically

synchronized nodes (the color of the nodes corresponds to

the cluster of physically synchronized links they belong to)

FIG. 4. Evolution of the fraction of RS

links, fRS, in SF (a) and ER (b) net-

works as a function of the coupling

strength k, and for different values of

Dx. The remaining parameters are set

as in Fig. 1. The fraction of RS links

first increased as k is increased, with

one (in ER networks) or two peaks

(in SF networks) as observed for the

evolution of nRS, and then falls as net-

works recruit physical (instead of RS)

links to get synchronized.

FIG. 3. Comparison of nRS (a) and

(b) and LRS (c) and (d) in a SF (a) and

(c) and ER (b) and (d) network of

Stuart-Landau oscillators with a¼ 1 or

a¼ 1000 and a network of Kuramoto

purely phase oscillators for Dx¼ 2.6.
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FIG. 5. Evolution of components of

physically (a) and (b) and remotely (c)

and (d) synchronized nodes in an ER

network with Dx¼ 2.8, when k is

increased by adiabatic continuation

from k¼ 1.65 (a)–(c) to k¼ 1.70

(b)–(d). Nodes are colored according

to the physically synchronized compo-

nent they belong to when k¼ 1.65, i.e.,

in (a). The remaining parameters are

the same as in Fig. 1. At k¼ 1.70 two

communities (the one with blue nodes

and the one with cyan nodes), that were

remotely synchronized at k¼ 1.65, fuse

into a single one and, as a consequence,

the RS links between the two commun-

ities existing for k¼ 1.65 disappear at

k¼ 1.70.

FIG. 6. Evolution of components of physically (a), (b), (c) and remotely (d), (e), (f) synchronized nodes in an ER network with Dx¼ 1.5 and hki ¼ 2, when k is

adiabatically increased. Nodes are colored according to the component to which they belong in (a) and, then, represented with the same colors in (b)–(f). The net-

works correspond to the following value of k: (a) and (b) k¼ 1.75; (c) and (d) k¼ 1.80; (e) and (f) k¼ 1.85. For progressive increase of the coupling coefficient,

first three of the four communities, existing at k¼ 1.75 and synchronized thanks to RS links, merge and, correspondingly, the RS links between these communities

disappear, and, then, the fourth community (synchronized with the other three, already at k¼ 1.80 thanks to RS links) aggregates to the previous ones.
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and some nodes of these clusters appear remotely synchron-

ized with nodes belonging to different clusters [as shown in

Fig. 5(c)]. When k is increased to k¼ 1.70, two of these clus-

ters merge together [Fig. 5(b)] through two physically

synchronized links that connect each cluster to a new node

synchronized to each of them. Thus, at k¼ 1.70 two com-

munities that were remotely synchronized at k¼ 1.65, fuse

into a single one and, as a consequence, those RS links

between the nodes of the two communities reported for

k¼ 1.65 in Fig. 5(c) disappear at k¼ 1.70 [Fig. 5(d)]. We

note that the choice of the threshold d may impact in which

nodes are assigned to which groups, although we have

observed qualitatively similar results when the threshold is

changed. In fact, the evolution of communities remains the

same, although the value of k at which they merge may be

slightly different.

A further example of the merging of RS clusters is

shown in Fig. 6. We consider an ER network with Dx¼ 1.5

and hki ¼ 2, when k is increased with continuation from

k¼ 1.75 to k¼ 1.85. For k¼ 1.75, the network is divided

into four main components of physically synchronized nodes

plus some small communities and isolated nodes (Fig. 6(a)).

The analysis of the components of RS nodes (Fig. 6(d))

reveals that there are RS links between the four commun-

ities. In fact, increasing the coupling to k¼ 1.80 three of

these communities merge (Fig. 6(b)) and, correspondingly,

the RS links between these communities disappear (Fig.

6(e)). Finally, a further increase of k (k¼ 1.85 in Fig. 6(c))

leads to the aggregation of the fourth community (the bigger

one) to the previous ones. Also in this case, almost all the RS

links disappear (Fig. 6(f)) and very few RS links are

observed for k¼ 1.85.

IV. CONCLUSIONS

In this paper we have provided measures to study

remote synchronization in general complex networks. This

phenomenon relies on the mutual synchronization of pairs

of uncoupled nodes. Each remotely synchronized pair of

nodes is thus physically connected through an intermediary

node (not synchronized with them) or a sequence (path) of

intermediary nodes. This is an important difference with

another form of remote synchronization reported in Ref. 31,

where the analysis focused on the distribution of phase lags

in a network of homogeneous oscillators (all oscillating at

the same frequency) and a relationship between modules

appearing in the network structure and the pattern of phase

lags was revealed. The analysis we have presented reveals a

stronger condition in that, according to our results, two RS

nodes do not show any form of synchronization with inter-

mediate nodes.

Although the original discovery of remote synchroniza-

tion was restricted to a rather particular setup, a star graph,

the analysis carried out in this paper, through the introduc-

tion of appropriate indicators, reveals that remote synchroni-

zation is common in general complex networks, such as

Erd}os-R�enyi and Scale-free graphs of coupled oscillators

having amplitude and phase as dynamical variables. The

addition of amplitude as a dynamical variable, in contrast

with the typical framework of networks of coupled

phase-oscillators, provides the observation of remote syn-

chronization and elucidates an important role played by it. In

fact, we have found that remote synchronization constitutes

a mechanism anticipating synchronization by physical links

in networks with heterogeneous distribution of natural fre-

quencies. Our results indicate that, in these networks, com-

munities of nodes synchronized through RS links appear for

values of coupling just lower than those allowing the merg-

ing of these communities through physical links. As synchro-

nization is ubiquitous in natural and man-made systems, we

suggest that this can be an important mechanism to explain

the emergence of communities of synchronized nodes, not

connected by physical links.

Our work suggests that remote synchronization is not

significant for ensembles of phase oscillators, since its main

underlying mechanism seems to be the modulation of the

amplitude of intermediary nodes allowing information

transfer between uncoupled pairs of nodes. In fact, when

similar settings are applied to phase oscillators, a different

phenomenon is observed, namely, that of explosive
synchronization17 in which the typical second-order syn-

chronization transition transforms into a first-order one. In

its turn, remote synchronization appears as a rather robust

state prior the onset of global synchronization since for a

wide range of coupling strengths almost all the nodes are

remotely synchronized with, at least, another one while the

level of global synchronization remains small. Thus, our

results open the door for experimental observations of this

novel state in which the existence of a synchronized pair

cannot be associated to a given physical interaction through

a single link of the network and highlight the important dif-

ference between the real (i.e., associated with physical

links) and the functional (i.e., emerging from synchroniza-

tion) connectivity of a network.
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Chapter 9

Conclusions

We have arrived at the end of this journey, and it is now time to summarize

the main achievement obtained and pro�le the next steps to do. We will start

providing an overview of the results obtained throughout the doctorate and of

the consequences that these have inside the global scenario of network science.

Then, we will focus more in detail on the results obtained by each paper. In

this way, at the end of the reading, the reader will achieve both a global and

a �local� knowledge about the results obtained. Also, before commenting on

the future perspectives, we will spend few words on other works that are not

included in this manuscript, but that also form part of the scienti�c production

of the candidate.

9.1. Main results

9.1.1. General achievements

Considering what has been shown so far in the previous chapters, we can try

to summarize it and extract some general conclusions about the work exposed

in the present thesis. To do so, we will lean on the three main objectives listed

in the introduction, using them as a guidance. Concerning objective number 1

(Extension of known models used to study complex systems to achieve a more

realistic description of them), we have seen how the extension on known models

(like that of Stuart Landau), has allowed to observe new phenomena and, in

some cases, to update the set of conditions necessary to observe them (like, for

example, including a range of velocity inside which cooperation is promoted

more), thus enriching the description of previously studied systems. Such

kind of work can be included into the more general context of improvement of

existing models with the aim of provide a description of complex systems as a
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whole; since, up to now they have been studied taking into account just one

component (kind of interaction) per time, or by considering the dynamics in a

separate way albeit, de facto, these are usually coupled.

With respect to objective 2 (Retrieval, analysis, and management of big

amount of data originated by real complex systems), we can say that studying

complex systems without the opportunity to make real comparisons between

models and real data, reduces such study to a mere mathematical exercise get-

ting rid of every physical meaning. For this reason, whenever possible, we have

tried to use in our works as much real data as possible. At the present time,

it would also be not very meaningful thinking of simulating systems with sizes

of the same order of the real ones using only toy models. The management of

big amount of data is becoming, day after day, an unavoidable element to take

into account for the comprehension of real system (just think, as an example,

to the number of time varying interactions among people occurring every day).

Due to the increase in the size of datasets, new ways to store, manage, and

analyze e�ciently those data have to be found. The scienti�c community is

thus putting a lot of e�orts into the re-design of a many algorithms in or-

der to study both topological and dynamical properties of complex systems of

increasing size and bearing a greater amount of information encoded within

them. In a nutshell, big-data related problems are not just a whim of the

scienti�c community but, rather, a necessary step to make in order to accrue

a deeper comprehension of complex systems.

Finally, the achievement of objective 3 (Study emerging properties and phe-

nomena in systems described using the new frameworks of time-varying and

multilevel interactions.), places us inside the new age of network science (and

complex systems one as well). We have seen, in fact, how the inclusion of

the time dimension in the description of the interactions dramatically alters

the behaviour of systems previously studied under �static� conditions. As an

example of that, we have seen how changing the time resolution used to study

the system changes the emergence of cooperation in the system due to the

presence of time correlations in the interactions. If we really want to achieve

a better and more realistic description of complex systems, we have to encode

the highest possible amount of information in their representation. The ap-

pearance of new formalisms of time-varying and multilevel networks, has surely

allowed us to make a big leap forward in this sense. Nevertheless, a previous

step is necessary: a systematic study of the topological properties (and their

emergence or disappearance when one falls back to the "usual" description)

of such systems is due. In this sense, a signi�cant contribution to this aspect

has been given in one of the works included in this thesis. In fact, in Chap. 6,

we have proposed a study of how the topological properties of multilevel net-

works emerge when these are converted into single layer ones. As concluding
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remark, we can say that, in general, in the time-varying case (as well as in

the multilevel one) the behaviour of well understood dynamical processes (like

di�usion/routing, or evolutionary game theory) taking place on top of such

kind of topologies is completely di�erent from that observed so far as has been

shown in Chaps. 4 and 7. These results, together with others present in the

literature, represent an authentic discontinuity with the past, and will demand

a lot more of e�orts to acquire a complete masterhood about the behaviour of

real systems mappable with such formalisms.

Arrived at this point, and keeping in mind this global vision on the results

obtained, we are now ready to make a further step forward by analyzing more

in detail the results found in each manuscript presented in this thesis.

9.1.2. Achievements of each paper

We are now ready to resume the main achievement obtained in each paper.

The aim of this part is double: provide a detailed view of the main results

obtained, and pave the road to the future development of the work discussed

so far. So, in a glance, we can conclude that:

In Chap. 3, we have seen how the presence of time-varying interactions

generated by the movement of the agents, alters the scenario of the onset of

cooperation displaying an intermediate region of values of velocity for which

the onset of cooperation occurs under less favorable conditions than in the

static case. Also, the transition from the fully defective state toward the fully

cooperative one depends on the value of the velocity. The reasons behind such

phenomenon are rooted in the fact that the rate of creation and deletion of links

is controlled by the velocity of agents. When such rate is moderate, cooperators

are able to explore the space and clusters of cooperators can form and survive.

Also, the group size shows a similar resonance phenomenon although, in this

case, the point at which cooperation is enhanced is related to the percolation

point of the e�ective network, i.e., with the point at which the size of the

groups is large enough so as to have a macroscopic giant component for the

network of contacts.

In Chap. 4, we focused on a di�erent aspect of time-varying interactions.

We tried to uncover, in fact, not simply the e�ects on cooperation originated

by time varying interactions per se, but rather, what is the role played by time-

correlations in the evolution of cooperation. In order to do so, we considered an

evolutionary game dynamic on top of a time-varying topology corresponding

to real social interactions. The numerical results have shown that cooperation

is seriously hindered when agent strategy is updated too frequently with re-

spect to the typical time-scale of agent interaction, and also when real time
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correlations are present. The reasons behind such behaviour may be found in

the correlation between the size of the giant component, and the presence of

temporal correlations, such as edge persistence and recurrence, as a function

of the aggregation interval.

In Chap. 5, we present a co-evolutionary approach involving two di�er-

ent dynamical processes: evolutionary game theory, and spreading of diseases.

Considering a population of agents, and thinking of the act of getting vac-

cinated voluntarily as cooperating, it is possible to set up a social dilemma

involving the vaccination. Starting from the fact that scale-free topologies fos-

ter more both the spread of infections and the emergence of cooperation, we

can ask ourselves what happens if we put these to processes into competition.

We observe that, depending on the circumstances (basically: the quality of the

vaccine, its cost, and the probability of being infected) the spread of infection

may be overcome by vaccination. This implies the suppression of the infec-

tion and the appearance of a macroscopic fraction of immunized individuals

providing herd immunization to the whole system. Moreover, we can observe

a crossover e�ect in both the fraction of immunized and infected subjects as

a function of infection probability among systems with interactions patterns

described by Erd®s-Rényi or Barabási-Albert topologies.

In Chap. 6, we try to understand if the topological properties of a multiplex

system remain the same, or not, when the layers are progressively projected

onto a single one. We are able to �nd that, in general, the properties displayed

by the single layers and the same quantities calculated in the multiplex sys-

tem are not the same. They are the consequence of an emerging phenomenon

intimately related to the multilayer character of the system. In the case of Eu-

ropean Airlines multiplex, this is con�rmed also by the fact that if we consider

layers of di�erent kind, the merging of low-cost and major (national) layers

leads to the emergence of qualitatively di�erent aggregate networks. This

demonstrates that multiplex nature of many systems cannot be ignored and

has deep consequences also on the dynamical processes acting on multilayer

networks.

In Chap. 7, following the idea of Chap. 6, we study the robustness of the

European airlines under the problem of re-scheduling passengers of a �ight that

has been cancelled in an airlines multiplex network composed of many layers,

each of which corresponds to a di�erent airline. The inclusion of a structure

composed of separate layers alters the resilience of the system compared to

the case of a single layer network. To account for the multilayer structure, we

measure the resilience of the system as a function of the number of passengers

that have been successfully re-schedule within the same airline (layer) or using

a di�erent one. In particular, the ability to re-schedule passengers strongly
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depends on the variation of the shortest path length as a function of the number

of deleted �ights, but also on the capacity tolerance of each �ight.

Finally, in Chap. 8, we studied the problem of �nding remote synchroniza-

tion in networks of coupled Stuart-Landau oscillators. Apart from con�rming

that remote synchronization exists also for topologies di�erent from a star,

we observe that remote synchronization constitutes a mechanism anticipating

synchronization by physical links in networks with heterogeneous distribution

of natural frequencies. Also, we con�rm that remote synchronization is not sig-

ni�cant for ensembles of phase oscillators, since its main underlying mechanism

seems to be the modulation of the amplitude of intermediary nodes allowing

information transfer between uncoupled pairs of nodes. In fact, when similar

settings are applied to phase oscillators, a di�erent phenomenon is observed,

namely, that of explosive synchronization.

9.2. Other publications

During the doctorate, the candidate has also worked, and published, on

other subjects apart from those appearing in this manuscript. Such works,

do not fall within the route followed by this thesis, albeit being related with

complex networks as well. Below, we provide a brief comment about the main

results found in each of these papers.

The �rst paper, entitled: �Co-evolution of strategies and update rules in

the prisoner's dilemma game on complex networks� studies the emergence of

cooperation in the prisoner's dilemma game in the case of players that can co-

evolve both their strategy and the rule used to update (change) it. Moreover,

even the role played by di�erent underlying topologies in such coevolution

is studied, considering network topologies spanning from single-scale random

(Erd®s-Rényi) networks, to scale-free (Barabási-Albert) ones passing through

intermediate ones. The interested reader could look at [145].

The second paper, entitled: �Urban street networks, a comparative analysis

of ten European cities� belongs to a line of research undertaken prior to the

start of the Ph.D, concerning the study of the structural properties of a special

kind of spatial networks: those generated from urban street patterns. In this

work, in particular, the structural properties, like average path length L, of

ten European cities are compared in order to �nd analogies, regularities, and

di�erences among them. For further information, please consult [146].

The third paper, entitled: �Information sharing in quantum complex net-

works� may be classi�ed within a highly innovative line of research that has

come to light very recently, and that is capturing the attention of two separate
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communities: the one of �network scientists� and that of quantum physicists.

In particular, in this work, we study how the presence of an interacting pattern

described by a complex network could a�ect the behaviour of the entanglement

entropy. Di�erent network substrates have been used (regular, random, scale-

free) in order to study such behaviour and the results are resumed in [147].

9.3. Future perspectives

If the results contained in this thesis represent the �point of arrival� of this

going beyond process, it is worth spending some time speculating on what could

be the next steps. Of course, the most intuitive one is to continue following the

path taking advantage of coevolutive modelling in order to design more realistic

models able to capture more complex scenarios. As an example, one could

think of combining synchronization and evolutionary game theory in order to

model systems where the fully synchronized state can be achieved only if all

the agents cooperate but where two agents that try to get synchronized have

to pay a cost to do that.

Another direction worth of being explored is that of considering well known

dynamical processes (like, again, synchronization) on top of new kind of topolo-

gies like time-varying and multiplex ones. The former case, for example, will

allow the time to play a role not only in the evolution of the dynamical state of

the nodes but also in the way they interacts among them. The latter, instead,

will permit to deal with di�erent kind of interactions at the same time that

may exert di�erent in�uences on the state of the system. With respect to the

previous point, the use of new kind of topologies represents more a leap in

the dark because we still lack a lot of information due to the novelty of these

approaches.

Last, but not least, an interesting direction that could be followed is that

o�ered by the so called �big data�. In the last few years, in fact, an extremely

higher amount of data have become available to the scientists. The reasons

behind the appearance of such big amount of data deal, from one side, with

the availability of new techniques to retrieve them (experiments, inquiries,

web crawling, and so on so forth) and, from another one, with the explosion of

information available in context that did not exist before; think, for example,

to the case of the so-called social networks or the World Wide Web. Until few

years ago platforms like Facebook or applications like FourSquare did not exist

and the information available on the friendship relations among people (or on

how people move) were signi�cantly smaller that those available nowadays.

Thanks to big data, we will have the opportunity to: make better compar-
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isons between theory and experiment, extend the size of the systems studied

toward the thermodynamic limit, and set up ad hoc experiments with the aim

of proo�ng hypothesis that up to now we were able to check only through

theory or computation. Of course, we must not forget, that there are still a

lot of complex systems that have not been studied by means of complex net-

works. Those systems can be thought as goldmines because may lead to the

formulation of new measures, or the discovery of phenomena that have not

seen before.

In conclusion, complex networks are a very powerful tool to unveil the

secrets of many di�erent complex systems. Since its birth as a discipline,

complex networks science has been able to explain many phenomena but there

are still a lot of questions that await for an answer. This is the challenge that

network science is called to face.
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people that, in a way or another, left a trace in my life and helped me to arrive

up to this point. I also want to thank all those people that, instead, tried

to push me down and made my journey less pleasant. Sorry guys, try again

(maybe you will be luckier next time)!

Now, I would like to spend some words of gratitude towards some special

people.

- A mis directores de tesis: Jesús y Sandro. El primero por haber apostado

(y con�ado) en mí aceptándome como su estudiante y el segundo por la

paciencia que tuvo a lo largo de estos años con mi torpeza. La verdad es

que de�nir mi relación con ellos como la de jefe-estudiante sería reduc-
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tivo. Cuando Jesús estuvo de post-doc en Catania pensé que me hubiera

gustado poder hacer el doctorado bajo su dirección. Hoy puedo decir que

he cumplido ese deseo y le doy las gracias por todo lo que hizo por mi

incluso cuando le tenía gana de matarme por mi pereza o por mis errores.

A Sandro les agradezco por haberme echado las broncas un día sí y otro,

también con el único objetivo de convertirme en algo mejor de lo que era.

En mi mente quedarán clavadas las miles de comidas juntos, los días de

esquiar en el Pirineo, las películas en el cine (excepto �Headhunters�, por

la cual me disculpo públicamente con él), y muchísimas cosas más.

- La mia famiglia. Per loro, avermi visto andar via ed essere stato lontano

tutti questi anni (ed ancora di tornare a casa non se ne parla manco

per scherzo) non dev'essere stato facile. Li ringrazio per il loro appoggio

incondizionato e per avermi permesso di poter inseguire i miei sogni. Una

menzione speciale va ai miei cugini Lucio e Gabriella.

Me gustaría mencionar también a mi �familia española�. Gracias a Doña

Lola y Don Jesús por haberme acogido como un hijo.

- A los miembros del grupo FENOL de la Universidad de Zaragoza. Tener

buenos compañeros de trabajo es un requisito fundamental para poder

disfrutar laboralmente. Por eso, gracias a: Fernando, Juanjo, Mari

Carmen, Mario, Pedro, Yamir, Alessandro, Carlos, David, Javi, Uta,

Ana Elisa, Emanuele, Fernando, Joaquín, Pablo, Rafa y especialmente a

Raquel, por haber aguantado todas mis bromas y charlas.

- Un ringraziamento speciale va ad alcuni collaboratori che hanno avuto

la sfortuna di dover lavorare con me durante il mio dottorato. Un grazie

quindi a: Vito, Roberta (GGIOIA), Enzo, Mattia, Valentina, Manlio,

Sera�na, Oscar (con el que he compartido tanto comidas como el man-

tenimiento del cluster) e Giulia.

- Siempre he pensado que el rugby es más que un deporte, es una manera

de enfrentarse a la vida. Aquí en Zaragoza he tenido la suerte de formar

parte de un club formado por personas extraordinarias, una verdadera

familia (no consigo encontrar ninguna otra palabra). La cosa que me

ha dejado más sorprendido ha sido la manera en que mis compañeros

me han incorporado dentro del club. He estado aquí jugando solo dos

años, y me parecía como si formase parte del club desde toda mi vida.

A lo largo de mi carrera como deportista puedo asegurar que no había

sentido muchas veces este sentimiento de �pertenencia�. Gracias entonces

a tod@s los miembros del Club Deportivo Universitario Rugby Zaragoza.

En particular, quiero darle las gracias a algunas personas especiales: Juki

(si no te hubiese conocido no estaría escribiendo estos agradecimientos),
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Caco (por el ejemplo que das con tu actitud), Andrés (por haber con�ado

en mí) y (last but not least) Waldo (un auténtico �hermano de armas�).

- La vita mi ha portato lontano dalla mia terra ma non ho dimenticato

quelle persone che sono rimaste �a casa� e che non mancano mai di farmi

sentire il loro appoggio e la loro amicizia anche a distanza e nonostante

non possa incontrarmi spesso con loro. Vorrei fare un ringraziamento

speciale a: Paola, Cristina e Luca, Peppe Angilella, Stefano, Antonio e

Lory, Alex (meglio noto come Maverick), Rauni, Daniela ed Emiliano,

Francesca e Giacomo.

- Una menzione speciale va ai membri del quintetto etilo-lescano. Come

sempre, sono l'ultimo del gruppo ad arrivare al traguardo ma so che non

abbiamo mai dato troppo peso a queste formalità ma piuttosto al bisogno

di incrociare periodicamente le nostre strade. Nonostante tutti i cazzi

della vita so che potrò sempre contare su di voi e sul fatto che almeno

una volta l'anno in qualche parte del mondo si celebrerá una reunion.

Un grazie speciale quindi a Thänô Tchaikovsky (futuro tru�atore dele-

gato dell'Eni), Salvuccio (Tombeur de femmes in quel di Paris), Gabriele

(simpatico omino di pastafrolla) e Danilo (ti vogliamo bene uguale anche

se sei un hipster).

- Si en el curro soy un torpe y un vago, en la vida común soy incluso

peor. Aguantarme, con lo pesado, soso, borde y friqui que soy; y con

todas las manías (in primis aquella de la limpieza) que tengo debe de ser

verdaderamente una pesadilla. Por lo tanto, quiero agradecer aquellos

�santos� que en estos años han compartido hogar conmigo sin echarme

o tirarme una bala en la cabeza. En modo especial: Terruccio (my

son!), Lety (nunca olvidaré tus risas), Annuzza (mi alemana favorida),

Mar (casi me matabas incendiandos el piso) y Mer (por sus �cumplidos

cariñosos�).

- Il penultimo ringraziamento va a lei, Angela. Per lei sono stati anni

molto di�cili avendo dovuto accettare la mia decisione unilaterale di

emigrare all'estero. La distanza mi ha costretto a non poter stare al suo

�anco quando magari avrebbe avuto bisogno di me, e del mio sostegno,

e per questo le chiedo scusa. Spesso mi sono chiesto cosa le ha fornito

la forza con la quale ha atteso con pazienza ogni nostro incontro, oppure

sopportato ogni mia partenza. Ho scelto da tempo che è lei la persona con

cui voglio spendere il resto dei miei giorni, ed avevo persino immaginato

ad una proposta �speciale� da farle il giorno in cui fossi diventato dottore.

Purtroppo, nella vita non sempre tutto va come vorremmo e mi scuso

quindi anche per averle �rovinato la sorpresa� avendo dovuto accelerare i
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tempi. Non basterebbe una tesi per elencare tutti i motivi per cui dovrei

ringraziarla ma se volesse farmi il piacere di diventare mia moglie magari

un pò di tempo per elencarglieli poco a poco penso che riesco a trovarlo.

Vorrei concludere dicendo che senza di lei questa tesi sarebbe comunque

stata scritta ma sicuramente ci sarebbero state molte meno risate nella

mia vita. Ti amo.

- My last acknowledgement goes to Spain, its people, colors, and �avours.

Here I have learned what I believe is the true meaning of the word �esta.

After three and a half years, I still consider myself (and I always be) as an

Italian but I am now also a bit Spanish (or, more precisely: ½Aragonés! ).

Before letting you go, I want to reward you for your patience leaving some

citations that have meant a lot during these years.

On the theoretical side, small-world networks are turning out to be

a Rorschach test � di�erent scientists see di�erent problems here,

depending on their disciplines.

Steven H. Strogatz - Nature, 2001.

[. . .] En este momento yo, de verdad, no tendría ningún

inconveniente en morir. No tengo ningun interés en seguir. Lo que

pasa es que quiero mi mujer, sé que le hago falta, sé que le conviene

y estaré todo el tiempo que le haga falta. Pero hoy ya hay la serie

de molestias que tiene la vida de un viejo sordo, medio ciego y con

otros inconvenientes que no se le voy a describir. Todos estos

inconvenientes ya todas las mañanas: me tengo que levantar, poner

la camisa y tal, me tengo que poner las molas, me tengo que pulir

los ojos, las orejas. Todo eso no me interesa ya porqué además ya

he visto el espectáculo y me importa tres pepinos, ¾verdad? Pero,

yo tengo que vivir porqué: se habla mucho del derecho a la vida,

pero es que hay más. Hay el deber de vivirla. Hemos recibido de la

vida una vida; pues, ½vamos a vivirla!

José Luis Sampedro � entrevistado por Jordi Evolé 29/01/2012

Life does not end with your death. What will survive of you is the

message you send to other people. This is the immortality of a

human being.

Rita Levi Montalcini
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It takes a heap o' livin' in a house t' make it home,

A heap o' sun an' shadder, an' ye sometimes have t' roam

Afore ye really 'preciate the things ye lef' behind,

An' hunger fer 'em somehow, with 'em allus on yer mind.

It don't make any di�erunce how rich ye get t' be,

How much yer chairs an' tables cost, how great yer luxury;

It ain't home t' ye, though it be the palace of a king,

Until somehow yer soul is sort o' wrapped round everything.

It takes a lot of living to make a house a home,

It doesn't make any di�erence how rich you get to be

How much your chairs and tables cost, how great your luxury;

It isn't home to you, though it be the palace of a king,

Until somehow your soul is wrapped round everything.

Edgar Albert Guest � Home
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